Speeding Up Automated Assessment of Programming Exercises

Sami Sarsa
sami.sarsa@aalto.fi
Aalto University
Espoo, Finland

Charles Koutcheme
charles.koutcheme@aalto.fi
Aalto University
Espoo, Finland

ABSTRACT

Introductory programming courses around the world use automatic
assessment. Automatic assessment for programming code is typi-
cally performed via unit tests which require computation time to
execute, at times in significant amounts, leading to computation
costs and delay in feedback to students. We present a step-based
approach for speeding up automated assessment to address the
issue, consisting of (1) a cache of past programming exercise sub-
missions and their associated test results to avoid retesting equiv-
alent new submissions; (2) static analysis to detect e.g. infinite
loops (heuristically); (3) a machine learning model that evaluates
programs without running them; (3) a machine learning model to
evaluate programs without running them; and (4) a traditional set of
unit tests. When a student submits code for an exercise, the code is
evaluated sequentially through each step, providing feedback to the
student at the earliest possible time, reducing the need to run tests.
We evaluate the impact of the proposed approach using data col-
lected from an introductory programming course and demonstrate
a considerable reduction in the number of exercise submissions
that require running the tests (up to 80% of exercises). Using the ap-
proach leads to faster feedback in a more sustainable way, and also
provides opportunities for precise non-exercise specific feedback
in steps (2) and (3).

CCS CONCEPTS

« Social and professional topics — Computing education; « Ap-
plied computing — Interactive learning environments.

KEYWORDS

automatic assessment, feedback, sustainability, automated assess-
ment, source code, static analysis, machine learning, automated
assessment, educational data mining

ACM Reference Format:
Sami Sarsa, Juho Leinonen, Charles Koutcheme, and Arto Hellas. 2022.
Speeding Up Automated Assessment of Programming Exercises. In The

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UKICER2022, September 1-2, 2022, Dublin, Ireland

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9742-1/22/09.

https://doi.org/10.1145/3555009.3555013

Juho Leinonen
juho.2.leinonen@aalto.fi
Aalto University
Espoo, Finland

Arto Hellas
arto.hellas@aalto.fi
Aalto University
Espoo, Finland

United Kingdom and Ireland Computing Education Research (UKICER) Con-
ference (UKICER2022), September 1-2, 2022, Dublin, Ireland. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3555009.3555013

1 INTRODUCTION

Traditionally, automatic assessment of student source code is done
by running the students’ code in isolated environments [1, 27, 42];
in these environments, the code is typically first built and then run
against instructor-created unit tests to determine the correctness of
the submission. One downside of this approach is that it can take a
considerable amount of resources, especially in large programming
courses such as MOOCs or when submissions contain infinite loops.
Certainly, running the students code is not always necessary. Often
simple features such as those based on static analysis could already
tell whether something is wrong with the student’s program.

In this work, we propose a novel automatic assessment approach
that utilises a cache, static analysis, and machine learning to speed
up automatic assessment. We propose that instead of running tests
for every student submission, submitted source codes should first
go over a series of checks to determine whether running tests is
actually needed. When a student submits their program for evalua-
tion, we first 1) check whether a cache already contains previously
given feedback for equivalent code, 2) if not, we then analyse the
student’s code with static analysis methods to identify further is-
sues with the code such as the existence of infinite loops!, 3) if
the program passes the static analysis checks, a machine learning
model is used to predict whether the program is incorrect, and
lastly 4) only if the program passes all the previous steps, we then
run the code against a unit test suite.

We conduct a case study where we apply the approach to over
50,000 code submissions from a programming MOOC that uses the
many small exercises approach [2]. Advantages of using our pro-
posed approach over traditional automatic assessment that solely
relies on unit tests are 1) faster and potentially more exact feedback
to students, and 2) fewer resources needed which is both environ-
mentally friendly and cheaper.

2 BACKGROUND

2.1 Automated assessment of programming
exercises

Automated assessment systems have been used in programming
education for decades [20, 25, 41], receiving plenty of attention

ICatching all cases of infinite loops is impossible due to the halting problem.

https://doi.org/10.1145/3555009.3555013
https://doi.org/10.1145/3555009.3555013

UKICER2022, September 1-2, 2022, Dublin, Ireland

from both researchers and practitioners [1, 27, 42]. The earliest
automated assessment systems existed during an era where remote
access was not available and the systems required specific oper-
ators (e.g. [25]), while today’s systems typically have an online
interface [18, 32, 50] and often feature an online programming
environment in which students can work on the exercises [43, 54].

Programming exercises are assessed with a handful of approaches,
e.g. input-output testing and unit testing [1, 27], where the exer-
cises and tests are crafted by course instructors or course material
authors. Some automated assessment systems feature the possi-
bility to assess student-written tests [18, 30], or to assess or limit
the computational complexity of implemented algorithms [41, 50].
Unit testing can be performed in a variety of ways; in general, a
secured environment is needed so that student code cannot influ-
ence the operating system or other programs [27]. To increase the
speed of grading, if submitted code does not compile, systems may
also omit running the tests altogether [15] and e.g. directly provide
compilation errors as feedback instead.

2.2 Submission analytics

During the last decades, collection of source code and submission
data has become more popular [29]. Analysis of such data has led
into new insight e.g. on the types of errors that exist in students
code [4, 38]. In general, these analyses often focus on static analy-
sis of source code, which does not involve executing the analysed
code [14]. Static analysis can be used to determine to what extent
the source code has been written following common stylistic guide-
lines [16], to measure the complexity of the source code [28, 37, 40],
and to identify common programming flaws [4, 5]. With certain
restrictions, static analysis can also be used to detect infinite loops
in source code [5, 11, 26, 36].

Submissions are also often studied for the purposes of finding
similar submissions and to identify plagiarism [33, 37, 39, 45, 51],
i.e. students copying solutions from each other or from external
resources. Here, however, studies have highlighted limitations in
plagiarism detection in that it might not be feasible especially in
the context of smaller programming exercises [39, 48]. When con-
sidering how students may attempt to avoid plagiarism detection,
there are a multitude of approaches, which include renaming vari-
ables and/or functions, reordering code, and adding meaningless
code [17, 53].

Besides plagiarism detection, submission similarity and source
code similarity have been used for providing feedback to students
more efficiently [21, 44] and effectively [35]. While the more recent
approaches that use machine learning on source code have relied
on purpose-built program embeddings [3, 44], it is still unclear to
what extent such embeddings generalise [34], and how source code
should be represented (and modeled) seems to still seems to be a
somewhat open question [24].

3 APPROACH

The proposed approach encompasses four different evaluation
phases where student programs are checked for correctness. The
steps are visualised in Figure 1. The steps are the following: (1) First,
when a student submits an exercise for evaluation, a cache contain-
ing feedback given previously in the course for similar exercises is

Sami Sarsa, Juho Leinonen, Charles Koutcheme, and Arto Hellas

& @[] ® &

Check cache Static analysis

Submit exercise ML estimate Run unit tests

Figure 1: Our proposed evaluation sequence. Each step in the
sequence is the final step if a match or problems are found in
the step. 1. if the solution is in the cache, return cached test
results; 2. if static analysis finds errors, return those; 3. if the
ML-model is rather certain that there is a problem, return
feedback from the model; 4. execute unit tests and return
their results.

checked. If a match is found, feedback can be given instantly from
the cache; (2) Second, if there are no direct matches in the cache, a
static analysis of the student program is conducted to detect poten-
tial errors. Importantly, this does not require running the student
code; (3) Third, if the student’s program passes the previous checks,
machine learning models that utilise features based on static analy-
sis can be used to give feedback to students without running the
program; and (4) if all of the previous checks pass, only then we
actually run the program against instructor-created unit tests.

The first step (cache) is easy to implement using standard caching
techniques such as LRU caching [12]. The similarity of previously
submitted programs can be adjusted based on contextual needs: for
example, one context might want to utilise string-based similarity
metrics, while another might be happy with AST-based similarity.

The second step (static analysis) can encompass any type of
static analysis, for example, identifying common syntactic errors
and rule-based identification of infinite loops. Which static analysis
approaches are utilised can depend on the programming language
used and the needs of the specific context.

The third step (machine learning) relies on machine learning
models that have been trained with static analysis based features
using previously submitted student answers. What the models try
to detect can again be adjusted based on the context: for example,
one context might want to train a model to predict answer correct-
ness, while another might be more keen to predict the presence of
common misconceptions. A particular aspect of the third step is
the possibility of the machine learning model giving an incorrect
prediction, and thus students should be given an option to proceed
to the fourth step if they disagree with the model’s prediction. An
important aspect here is that we are not predicting the correctness
of learners’ programs, but their incorrectness; to avoid fostering
misconceptions, we do not want to risk providing feedback that
falsely claims a program is correct when it is not.

The fourth final step (running tests) is the traditional test based
automatic assessment approach and can further give “ground truth”
about the correctness of the program. This is the most resource
intensive step (considering only resources used for each individual
submitted program) by a large margin.

The steps are intentionally described at an abstract level, allow-
ing adaptation for the needs of specific contexts. As an example,
checking for duplicates can be conducted using AST comparisons,
which with some AST parsers require valid syntax — feedback on

Speeding Up Automated Assessment of Programming Exercises

syntax errors could be provided at this point. At the same time,
programming environments could also disallow submitting code
that contain syntax errors, although this would not omit the need
to do such checks also on the server.

Altogether, the goal is to speed up automated assessment. This
provides benefits both by hastening the process of giving feedback
(immediate error-correcting feedback when learning a task can lead
to faster learning [22]) as well as saving computational resources
and thus providing both economic and environmental benefits.

4 EVALUATION
4.1 Data

The dataset for our study comes from an open online introductory
programming course organised by Aalto University. The work-
load of the course is 2 ECTS, which corresponds to roughly 50 to
60 hours of work. The course uses Dart as the programming lan-
guage and features an online ebook with intertwined theory parts
and programming exercises. There are 64 programming exercises
in total. The programming exercises are worked on in an online
programming environment embedded into the online ebook; the en-
vironment provides basic programming environment functionality
such as syntax highlighting, autocompletion of code and executing
code. The environment also allows working with standard input,
provides functionality for submitting exercises for grading, and
showing exercise grading feedback within the environment.

The course uses an automated assessment system to grade the
submitted exercises and there are no upper limits for program-
ming exercise submissions. The assessment of the programming
exercises is based on a set of exercise-specific unit tests that verify
that the functionality required in each specific exercise is present.
Whenever grading a programming exercise, the automated assess-
ment system creates a sandbox for security purposes. Grading a
programming exercise typically takes between two to ten seconds;
for programs with infinite loops or bugs leading to timeouts (e.g.
waiting for standard input that is never given), we have used a
timeout threshold of thirty seconds. The dataset contains 54,904
programming exercise submissions to a total of 64 exercises from
a total of 725 learners. Of the submissions, 24,649 pass the tests,
meaning that approximately 55% of the submissions are at least
partially incorrect.

4.2 Research questions

We evaluate the proposed approach via a case study, answering the
following research questions.

RQ1 How often can exercise solution results be retrieved from
cache?

RQ2 How often can static analysis find errors in code submis-
sions?

RQ3 How often can simple machine learning models reliably
capture erroneous code submissions?

4.3 Approach

To answer RQ1, we explore two types of string-representations of
the programming exercise submissions: (1) exact string matching,
and (2) AST matching. The latter of the two requires valid syntax

UKICER2022, September 1-2, 2022, Dublin, Ireland

in order to form the AST, wherefore we include syntax checking
already in this phase when presenting the results, even though it
semantically falls under static analysis. In the present evaluation, we
do not normalise variables names or do other code transformations.

To answer RQ2, we use static code analysis heuristics to find cer-
tain cases when the problem does not halt and to identify problems
with semicolons. We keep the heuristics simple and merely check
for existence of while true loops combined with non-existence of
break or return clauses via regular expressions. In addition to look-
ing at heuristics for non-halting programs, we look at a common
error in many exercises in our data that is easily found with static
analysis. The error consists of a semicolon directly after an “if”,
“for” or “while” statement which causes the statement to not affect
any forthcoming statements as demonstrated in Listing 1; this er-
ror is similar to the “Empty If Statements” discussed by Brown et
al. [9]. Before computing the static analysis, we remove all the AST
duplicates as these would bias the results and are removed in the
cache step anyhow if present.

Listing 1: Typical extra semicolon error
if (x == "test"); {
// do stuff falsely assuming x == "test"

}

To answer RQ3, we use a simple machine learning model to pro-
vide a fast-to-train baseline for the potential of catching incorrect
solutions. Our model of choice is Logistic regression (LogReg), and
as input for the model, we use two BoWs (Bag-of-Words) computed
from submission ASTs. The two BoWs are token BoW and type
label BoW, which are concatenated to form the final input.

We train a LogReg model (L-BFGS solver and 100 maximum iter-
ations) per each exercise to identify erroneous submissions. Since
we aim to capture erroneous submissions, we use incorrectness as
the positive label and compute precision and recall to evaluate the
goodness of the models. We choose precision and recall since we
are interested in capturing as many erroneous examples as possible
(maximising recall) while keeping the false positive rate as low as
possible (maximising precision). Given that the label distribution is
highly skewed and this affects both precision and recall, we also
provide a naive Majority Vote model baseline results to account for
the effect of data skew.

We train the models using separate training and test sets (80%
training, 20% testing)?. As with static analysis, we remove the sub-
missions caught in previous steps (duplicates and static analysis)
to not bias the results and further, we only train and evaluate the
models if the correctness skew is not extreme (minority label count
in the test set amounts to at least 10% of the set size) in the resulting
test set.

5 RESULTS

5.1 Cache catching and syntax errors

Out of the 54,904 programming exercise submissions, 19,374 (ap-
proximately 35%) were exact duplicates of other submissions. Dur-
ing parsing the submitted programming exercises into abstract

2We omit cross-validation since averaging over the exercises should balance out
problems of having a single train-test split

UKICER2022, September 1-2, 2022, Dublin, Ireland

syntax trees (ASTs), 1,686 submissions were identified to have syn-
tax errors (approximately 3% of all submissions), and in total 31,434
(approximately 57%) of the ASTs were duplicates of other ASTs.
When considering the individual exercises, we observed consider-
able variance in the quantity of exact duplicates and AST duplicates,
where especially early on in the course there were more duplicates.
Indeed, a traditional first programming exercise in the course, ask-
ing students to write a program that prints “Hello world!” had over
96% of both exact and AST duplicates.

Figure 2 shows the proportion of duplicates out of all submissions
for each exercise, as both exact matches (blue solid line) and as AST
matches (orange dashed line). Overall, depending on the exercise,
the proportion of exact matches ranges from approximately 15% to
nearly 97%. For the ASTs, the proportions are naturally somewhat
larger, ranging from approximately 23% to nearly 97%.

The Figure 2 also shows the proportion of submissions with
syntax errors for each exercise (green dotted line). Overall, there
are considerably fewer syntax errors when compared to duplicates,
ranging from nearly 0% to approximately 10% per exercise.

100% =
—— Exact duplicates

AST duplicates

80% Syntax errors

)
S
X

40%

Percentage

20%

0%

0 10 20 30 40 50 60
Exercise

Figure 2: Proportion of duplicate programming exercise sub-
missions and syntax errors for each programming exercise.

5.2 Static analysis

The static analysis conducted as a part of this work consisted of
looking for semicolon problems (e.g. semicolon immediately after
an “if” statement) and infinite loops (using a naive approach based
on a regular expression). Out of the 21,784 unique programming
exercise submissions after the removal of AST duplicates and sub-
missions with syntax errors, 526 (approximately 2%) had semicolon
issues, while 207 (approximately 1%) had infinite loop issues — some
of these issues co-occured.

The proportions of these two types of issues are visualised in
Figure 3 over the exercises. Overall, we observe that problems with
semicolons are more common in the exercises than infinite loops
found by our heuristics. In a few of the exercises, up to 18% of the
submissions have semicolon problems while the largest proportion
of infinite loops is approximately 5% for particular exercises.

Sami Sarsa, Juho Leinonen, Charles Koutcheme, and Arto Hellas

18% —— Semicolon problems
Infinite loops

15%

13%

10%

8%

5% ‘
Mo
oo, I LA WO

0 30 40 5 60

0

Percentage

0 10 2
Exercise

Figure 3: Static analysis issues identified in the submissions
per exercise. Note that the y-axis values are shown up to 18%.

5.3 Machine learning based estimates of
exercise correctness

When constructing machine-learning models for predicting exer-
cise correctness, we used the 21,067 unique programming exercise
submissions that remained after the removal of AST duplicates,
syntax errors, as well as the submissions with found semicolon and
infinite loop issues. Overall, when training the models, we observed
a0.95 PR-AUC (Area Under the Curve of a plot with Precision on y-
axis and Recall on x-axis for all decision thresholds) for the LogReg
model and 0.81 PR-AUC for the baseline majority vote model.

Figure 4 shows the averaged precision and recall thresholds
over all the model scores for each programming exercise. Overall,
the LogReg model achieves high precision and recall scores. As
we are interested in capturing erroneous submissions while not
allowing for many false positives, we present results with two
different precision thresholds. At a threshold of 99% for precision, i.e.
predicting a correct solution as an incorrect solution approximately
once in one hundred submissions, the recall is approximately 10%.
This means that approximately 10% of the incorrect solutions would
be correctly identified as incorrect, thus needing to run unit tests for
90% of the incorrect submissions. At a threshold of 95% for precision
we achieve approximately 70% recall overall for the exercises. This
indicates that the LogReg model is able to capture around seven
tenths of the erroneous non-duplicate exercise submissions (with
95% precision) without needing to run unit tests.

Note that we evaluated the models using only the data remaining
in step 3 of the approach, i.e. having removed the duplicate program-
ming exercise submissions as well as the submissions that were
deemed to have issues during static analysis. We briefly explored
the performance of the model using all 54,904 submissions, where
we observed an improved performance for the LogReg model (0.97
LogReg PR-AUC) compared to the baseline majority vote model
(0.73 MV PR-AUC).

Speeding Up Automated Assessment of Programming Exercises

1.0
0.8
_5 0.6
i)
(5}
o
0 0.4
0.2
—— LogReg PR (AUC = 0.95)
0.0 MV PR (AUC = 0.81)
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 4: Logistic Regression error finding (incorrect solution
is positive label) Precision-Recall Curve aggregated over each
non-duplicate exercise where test sets consist of at least 10%
minority labels. Majority Vote as a baseline allows seeing the
effect of label skew in the curve.

6 DISCUSSION

6.1 Overview of results

Based on our analysis, the proposed approach considerably reduces
the need to run tests when evaluating student submissions. Ap-
proximately one half of the submissions are equivalent to prior
submissions when similarity detection is based on ASTs. The static
analysis identifies a considerably smaller proportion of submissions
with issues — in our data, less than 4% of the submissions (after
removing duplicates) had issues that were identified using static
analysis. The machine learning model shows promising results,
with approximately half of the programs that have passed the pre-
vious two steps being correctly identified to fail the tests with a
precision of 95% and recall of 70%. If a higher precision is desired,
the recall will likely be lower as evidenced in Figure 4. The overall
PR-AUC of the model was 0.95, which shows that the approach is
feasible over different decision thresholds. The precision of 95%
means that for twenty exercises the model predicts to be incor-
rect, one of them will actually be correct. The recall of 70% means
that seven out of ten incorrect submissions that reach the machine
learning step will be caught before sending them for testing.

Altogether, approximately 79% of the programming exercise
submissions are caught by the approach before having to run the
tests. Figure 5 illustrates these steps, showing the proportion of
exercises at each step that will be correctly identified before the
need to run the tests. If the course would be larger, the benefits
would naturally be larger and vice versa.

6.2 Potential time shavings

In our implementations and evaluations with the present data, trans-
forming a code to an AST took on average 7 milliseconds, checking
whether a code was in the cache took on average 1 microsecond
(starting with an empty cache), conducting the static analyses on a
code took on average 49 microseconds, extracting features from an

UKICER2022, September 1-2, 2022, Dublin, Ireland
Run tests
ML predicts failure

with high confidence
1Static analysis issue found

Submissions

Cache match

Figure 5: Sankey plot that shows the proportion of (incorrect)
submissions captured at each step of the approach.

AST for machine learning purposes and receiving an ML estimate
took on average 330 microseconds. All in all, despite additional
overhead from the steps, the reductions in time are considerable,
as approximately 79% of the code submissions could take less than
10 milliseconds to process. The computations were conducted on a
single thread of a laptop CPU of one of the researchers.

Considering that grading an exercise takes anywhere between
two to thirty seconds in our traditional test based automatic as-
sessment system, the approach would have saved between 24 and
361 hours of computing time and the precious time of the learners.
This assumes that the learners would trust the machine learning
step of the approach, where the learners would be given an option
to disagree; if the learners would always want to run tests regard-
less of the machine learning results, the approach would still save
between 18 and 265 hours.

6.3 Improvement directions

In the present study, we have presented the approach and evaluated
it with a simple case study. We acknowledge that each step of the
approach can be significantly tuned for better results when com-
pared to our present study. As an example, for the cache matching,
one could normalise variable names and partly the structure of the
code [46]. Inspiration for this part could be also drawn from the
research on plagiarism detection [33, 37, 39, 45, 47, 51] and on pro-
gram equivalence checking [6, 49], although one would naturally
want to avoid any approaches that rely on running the code.

For static analysis, one could include more sophisticated heuris-
tics for infinite loop finding [5] and increase the number of checks
for typical statically identifiable code issues, which has been done
extensively before [4, 9, 19, 38]. One possible stream would be
to also improve the feedback from compilation errors within the
programming environment, which could potentially reduce the
number erroneous submissions [7, 8]. We did, however, observe
that submissions with syntax errors were relatively rare to begin
with (approximately 3% of all submissions), which is most likely
due to the code editor used in the course already indicating the
presence of such errors while writing code and potentially also due
to the many small exercises approach [2].

For the machine learning step, in our current evaluation, we
have only trained a model that provides a binary prediction of
correctness and which used relatively simple features. While the
present evaluation shows the feasibility of the approach, we ac-
knowledge that binary correctness feedback is far from ideal. There
is, for example, no clear feedback on what to improve or what went

UKICER2022, September 1-2, 2022, Dublin, Ireland

wrong. This step could be considerably improved by training ma-
chine learning models that would use more advanced features for
identifying mistakes, as discussed e.g. in [13, 23, 31, 52], and then
provide feedback on the mistakes. We note, however, that some
of these approaches require e.g. execution traces, which would
require running the program and/or the tests and thus do not in
their present state speed up assessment. It is also unclear to what
extent the reported performance of these approaches has taken
the existence of duplicates into account, which is an important
preprocessing step in machine learning [10] - omitting this would
likely inflate the model performance. As an example, in our case,
we observed an increase in LogReg PR-AUC from 0.95 to 0.97 when
including also the duplicate submissions; the difference compared
to the baseline was more pronounced as the performance of the
majority vote model decreased (from 0.81 to 0.73 PR-AUC).

Going beyond the improvements to the approach, we also see
that parts of the approach could be distributed to learners’ local
environments. The static analysis and machine learning steps could
be scaled and continuously run in the background of a programming
environment to provide instant feedback similar to syntax checkers.
This could go beyond education as feedback on potential problems
may be of use in the professional context as well.

6.4 Limitations

There are some limitations to this work. Firstly, we evaluated the
proposed approach with a context-specific case study using data
from a single course. The course has many small exercises, which
naturally leads to a higher number of similar submissions when
compared to contexts that have larger programming projects.

Secondly, a part of the approach relies on a machine learning
model that needs to be trained. Such training can take considerable
amount of resources, depending on the used model. In the present
evaluation, we used Logistic Regression, which took less than 30
seconds to train on a high-end laptop. However, had we utilised e.g.
state of the art neural networks and larger datasets, it is possible
that the training time would exceed the time saved by using the
model. At the same time, smaller contexts do not necessarily have
to train their own models. In the future, pre-trained models could
be shared between contexts. It is possible, however, that training
the model would still be meaningful as having a model can lead to
faster feedback.

Thirdly, we acknowledge that there are a wide variety of ways
for assessing programming exercises, including solely relying on
static analysis [1]. Naturally, the proposed approach might not
provide benefits in all cases. In the present evaluation, considerable
benefits were observed, however.

Fourth, we acknowledge that with poor implementations, the
amount of time saved could be less than in our present evaluations
(or even negative). At the same time, we also note that there are
multiple opportunities to further tune the approach by e.g. adjusting
which steps to run for which exercises — based on our present
implementations, we did not see this as relevant due to the already
observed drastic differences.

Sami Sarsa, Juho Leinonen, Charles Koutcheme, and Arto Hellas

7 CONCLUSION

In this work, we proposed an approach for speeding up automated
assessment of programming exercises. We presented a case study
of the approach where we used submission data from an open
introductory programming course. We observed that the approach
would reduce the number of submissions for which tests would be
run by approximately 79%, leading to considerable reductions in
the use of computational resources, and faster feedback to students.
To summarise, our answers to the research questions are as follows.

RQ1. How often can exercise solution results be retrieved from
cache? When transforming the submitted source codes to abstract
syntax trees, we observed that approximately 57% of all of the sub-
missions were duplicates. In our present study, we did not perform
any transformations such as the normalisation approach proposed
by Rivers and Koedinger [46], which would further improve the
performance of the caching.

RQ2. How often can static analysis find errors in code submissions?
After removing duplicate exercises identified with the caching ap-
proach, we further statically analysed the submissions to search
for two types of errors. In the analysis, we observed that approxi-
mately 3.4% of the non-duplicate submissions had either infinite
loops or semicolon issues. Again, we used relatively simple heuris-
tics, and using a more fine-tuned approach would likely increase
the quantity of identified errors.

RQ3. How often can simple machine learning models reliably cap-
ture erroneous code submissions? We built machine learning models
per exercise to predict whether codes pass unit tests. We used rela-
tively simple features and a relatively simple model, at least when
compared to the state of the art. Even so, we obtained promising
results, achieving an average of 0.95 PR-AUC score. When choosing
95% as the precision threshold, the recall score was 70%. The 95%
precision means that on average for every twentieth prediction
of submission being incorrect, the submission would actually be
correct. The 70% recall means that on average seven out of ten sub-
missions that are incorrect would not require assessment by unit
tests as the machine learning model would catch these (assuming
students trust the model).

As a part of our present and future work, we are taking the
approach into use in our programming courses, and further eval-
uating with what types of programming courses the approach is
most beneficial in - does it, for example, also work in a web de-
velopment course with larger programming exercises? With the
approach in use, we will be looking into evaluating the impact of
faster feedback on students’ learning in the context of introductory
programming. Lastly, we are working on extending the machine
learning models to identify specific common programming miscon-
ceptions to allow better and targeted formative feedback related to
these misconceptions.

REFERENCES

[1] Kirsti M Ala-Mutka. 2005. A survey of automated assessment approaches for
programming assignments. Computer science education 15, 2 (2005), 83-102.

[2] Joe Michael Allen, Frank Vahid, Alex Edgcomb, Kelly Downey, and Kris Miller.
2019. An analysis of using many small programs in cs1. In Proc. of the 50th ACM
Technical Symposium on Computer Science Education. 585-591.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proc. of the ACM on Programming Lan-
guages 3, POPL (2019), 1-29.

Speeding Up Automated Assessment of Programming Exercises

(4]

[5

(6]

(9]

[10]
(1]

(12]

[13]

[14

[15]

[16]
[17]

[18

[19]

[20

[21]

[22]

[23]

[24

[25]

[26

[27]

[28

[29]

[30

Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proc. of the 46th
ACM technical symposium on computer science education. 522-527.

Nathaniel Ayewah, William Pugh, David Hovemeyer,] David Morgenthaler, and
John Penix. 2008. Using static analysis to find bugs. IEEE software 25, 5 (2008).
Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. 2020. ARDIff: scaling pro-
gram equivalence checking via iterative abstraction and refinement of common
code. In Proc. of the 28th ACM Joint Meeting on European Software Engineering
Conf. and Symposium on the Foundations of Software Engineering. 13-24.

Brett A Becker. 2016. An effective approach to enhancing compiler error messages.
In Proc. of the 47th ACM Technical Symposium on Computing Science Education.
Brett A Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis] Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, et al. 2019. Compiler error messages considered unhelpful: The landscape
of text-based programming error message research. In Proc. of the working group
reports on innovation and technology in computer science education. 177-210.
Neil Christopher Charles Brown, Michael Kélling, Davin McCall, and Ian Utting.
2014. Blackbox: A large scale repository of novice programmers’ activity. In Proc.
of the 45th ACM technical symposium on Computer science education. 223-228.
Jason Brownlee. 2022. Data preparation for machine learning.

Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C Rinard. 2011.
Detecting and escaping infinite loops with jolt. In European Conf. on Object-
Oriented Programming. Springer, 609-633.

Marek Chrobak and John Noga. 1999. LRU is better than FIFO. Algorithmica 23,
2 (1999), 180-185.

Guillaume Cleuziou and Frédéric Flouvat. 2021. Learning Student Program
Embeddings Using Abstract Execution Traces. International Educational Data
Mining Society (2021).

Anusha Damodaran, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H Austin,
and Mark Stamp. 2017. A comparison of static, dynamic, and hybrid analysis for
malware detection. J. of Computer Virology and Hacking Techniques 13, 1 (2017).
Karol Danutama and Inggriani Liem. 2013. Scalable autograder and LMS integra-
tion. Procedia Technology 11 (2013), 388-395.

LF. Darwin. 1988. Checking C Programs with Lint. O’Reilly & Associates.

John L Donaldson, Ann-Marie Lancaster, and Paula H Sposato. 1981. A plagiarism
detection system. In Proc. of the twelfth SIGCSE technical symposium on Computer
science education. 21-25.

Stephen H Edwards. 2003. Improving student performance by evaluating how
well students test their own programs. J. on Educational Resources in Computing
(JERIC) 3, 3 (2003).

Stephen H Edwards, Nischel Kandru, and Mukund BM Rajagopal. 2017. Investi-
gating static analysis errors in student Java programs. In Proc. of the 2017 ACM
Conf. on International Computing Education Research. 65-73.

George E Forsythe and Niklaus Wirth. 1965. Automatic grading programs. Com-
mun. ACM 8, 5 (1965), 275-278.

Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.
2015. OverCode: Visualizing variation in student solutions to programming
problems at scale. ACM Transactions on Computer-Human Interaction (TOCHI)
22, 2 (2015), 1-35.

John Hattie and Helen Timperley. 2007. The power of feedback. Review of
educational research 77, 1 (2007), 81-112.

Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Bjérn Hartmann. 2017. Writing reusable code feedback at
scale with mixed-initiative program synthesis. In Proc. of the Fourth (2017) ACM
Conf. on Learning@ Scale. 89-98.

Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks
the best choice for modeling source code?. In Proc. of the 2017 11th Joint Meeting
on Foundations of Software Engineering. 763-773.

Jack Hollingsworth. 1960. Automatic graders for programming classes. Commun.
ACM 3, 10 (1960), 528-529.

Andreas Ibing and Alexandra Mai. 2015. A fixed-point algorithm for automated
static detection of infinite loops. In 2015 IEEE 16th International Symposium on
High Assurance Systems Engineering. IEEE, 44-51.

Petri Thantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppélé. 2010. Review
of recent systems for automatic assessment of programming assignments. In
Proc. of the 10th Koli calling int. conf. on computing education research. 86—93.
Petri Ihantola and Andrew Petersen. 2019. Code Complexity in Introductory
Programming Courses. In Proc. of the 52nd Hawaii International Conf. on System
Sciences, HICSS 2019. 7662-7670.

Petri Thantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jiirgen Borstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. Proc. of the 2015 ITiCSE on Working Group
Reports (2015), 41-63.

David Jackson and Michelle Usher. 1997. Grading student programs using ASSYST.
In Proc. of the twenty-eighth SIGCSE technical symposium on Computer science
education. 335-339.

(31

[32

[33

[34

[36

[37

(38]

[39

[40

[42

[43

[44

S
)

[46

[47

(48]

[49]

[51

[52]

[53

[54

UKICER2022, September 1-2, 2022, Dublin, Ireland

Sonja Johnson-Yu, Nicholas Bowman, Mehran Sahami, and Chris Piech. 2021.
SimGrade: Using Code Similarity Measures for More Accurate Human Grading..
In EDM.

Mike Joy, Nathan Griffiths, and Russell Boyatt. 2005. The boss online submission
and assessment system. J. on Educ. Resources in Computing (JERIC) 5, 3 (2005).
Mike Joy and Michael Luck. 1999. Plagiarism in programming assignments. IEEE
Transactions on education 42, 2 (1999), 129-133.

Hong Jin Kang, Tegawendé F. Bissyandé, and David Lo. 2019. Assessing the Gen-
eralizability of Code2vec Token Embeddings. In 2019 34th IEEE/ACM International
Conf. on Automated Software Engineering (ASE). 1-12.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2014. Strategy-based feed-
back in a programming tutor. In Proc. of the computer science education research
conf. 43-54.

William Landi. 1992. Undecidability of static analysis. ACM Letters on Program-
ming Languages and Systems (LOPLAS) 1, 4 (1992), 323-337.

Ronald J Leach. 1995. Using metrics to evaluate student programs. ACM SIGCSE
Bulletin 27, 2 (1995), 41-43.

David Liu and Andrew Petersen. 2019. Static analyses in python programming
courses. In Proc. of the 50th ACM Technical Symposium on Computer Science
Education. 666—671.

Samuel Mann and Zelda Frew. 2006. Similarity and originality in code: plagiarism
and normal variation in student assignments. In Proc. of the 8th Australasian Conf.
on Computing Education-Volume 52. 143-150.

Susan A Mengel and Vinay Yerramilli. 1999. A case study of the static analysis of
the quality of novice student programs. In Proc. of the thirtieth SIGCSE technical
symposium on Computer science education. 78-82.

Peter Naur. 1964. Automatic grading of students’ ALGOL programming. BIT
Numerical Mathematics 4, 3 (1964), 177-188.

José Carlos Paiva, José Paulo Leal, and Alvaro Figueira. 2022. Automated Assess-
ment in Computer Science Education: A State-of-the-Art Review. ACM Trans.
Comput. Educ. 22, 3, Article 34 (jun 2022), 40 pages.

Andrei Papancea, Jaime Spacco, and David Hovemeyer. 2013. An open platform
for managing short programming exercises. In Proc. of the ninth annual int. ACM
conf. on International computing education research. 47-52.

Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. 2015. Learning program embeddings to propagate
feedback on student code. In International conf. on machine Learning. PMLR,
1093-1102.

Lutz Prechelt, Guido Malpohl, and Michael Philippsen. 2002. Finding Plagiarisms
among a Set of Programs with JPlag. 7. of Universal Computer Science 8, 11 (2002),
1016-1038.

Kelly Rivers and Kenneth R Koedinger. 2013. Automatic generation of program-
ming feedback: A data-driven approach. In The First Workshop on Al-supported
Education for Computer Science (AIEDCS 2013), Vol. 50.

Francisco Rosales, Antonio Garcia, Santiago Rodriguez, José L Pedraza, Rafael
Méndez, and Manuel M Nieto. 2008. Detection of plagiarism in programming
assignments. IEEE Transactions on Education 51, 2 (2008), 174-183.

Simon, Oscar Karnalim, Judy Sheard, Ilir Dema, Amey Karkare, Juho Leinonen,
Michael Liut, and Renée McCauley. 2020. Choosing code segments to exclude
from code similarity detection. In Proc. of the Working Group Reports on Innovation
and Technology in Computer Science Education. 1-19.

Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. 2012. Equivalence
checking of static affine programs using widening to handle recurrences. ACM
Transactions on Programming Languages and Systems (TOPLAS) 34, 3 (2012), 1-35.
Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Partel. 2013.
Scaffolding students’ learning using test my code. In Proc. of the 18th ACM conf.
on Innovation and technology in computer science education. 117-122.

Michael] Wise. 1992. Detection of Similarities in Student Programs: YAP’ing
may be Preferable to Plague’ing. Acm Sigese Bulletin 24, 1 (1992), 268-271.
Mike Wu, Milan Mosse, Noah Goodman, and Chris Piech. 2019. Zero shot learning
for code education: Rubric sampling with deep learning inference. In Proc. of the
AAAI Conf. on Artificial Intelligence, Vol. 33. 782-790.

Mengya Zheng, Xingyu Pan, and David Lillis. 2018. CodEX: Source Code Plagia-
rism Detection Based on Abstract Syntax Tree.. In AICS. 362-373.

Daniel Zingaro, Yuliya Cherenkova, Olessia Karpova, and Andrew Petersen. 2013.
Facilitating code-writing in PI classes. In Proceeding of the 44th ACM technical
symposium on Computer science education. 585-590.

	Abstract
	1 Introduction
	2 Background
	2.1 Automated assessment of programming exercises
	2.2 Submission analytics

	3 Approach
	4 Evaluation
	4.1 Data
	4.2 Research questions
	4.3 Approach

	5 Results
	5.1 Cache catching and syntax errors
	5.2 Static analysis
	5.3 Machine learning based estimates of exercise correctness

	6 Discussion
	6.1 Overview of results
	6.2 Potential time shavings
	6.3 Improvement directions
	6.4 Limitations

	7 Conclusion
	References

