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Abstract—
In this paper, we analyze keystroke log data from two

introductory programming courses from two distinct contexts to
investigate the proportion of events that compile, how this relates
to contextual factors, the progression of programs, and academic
outcomes. We find that, as students write their programs, fre-
quency of compile and run events increases as does the proportion
of events that compile. We also find a spike in the number of
compile and run events as a program nears completion, that
the proportion of events that compile varies by assignment,
length of program, and programming context, that real-time
IDE error diagnostics lead to higher proportion of events that
are in compilable state, and that a student’s awareness of their
compilable state is correlated with exam score while the amount
of time they spend in an uncompilable state is not. Among the
practical implications of our work are the fact that researchers
cannot rely on frequency of compilation remaining constant
through an assignment and a call to researchers and practitioners
to design pedagogies that enhance student awareness of their
compilable state.

Index Terms—keystroke analysis, keystroke data, program-
ming process data, predicting performance, educational data
mining

I. INTRODUCTION

Learning to program is a path paved with errors and learning
how to handle them. In the context of computing education
research, compilation errors manifested through the work of
novice programmers have been under scrutiny for years [13],
[31], [8], [26]. The prevalence of compilation errors have
been studied across multiple contexts [8], [2], looking both
into often-occurring errors as well as into how the types of
recurring compilation errors evolve over time [10], [2], [3].
To help learners, researchers have sought to make compilation
error messages more informative [12], [5], as well as used
compilation errors to identify learners in need of help [24],
[47], [6], [9].

A stream of research of particular interest to us, which has
become more popular during the last decades, is the analysis of

the programming process of a learner [23]. Programming pro-
cess data can be collected at multiple granularities [23], [42].
Submission data collected by automated assessment systems
are perhaps the most common, while keystroke data collected
from the programming environment as the programmer types
are less common. Keystroke data can then be used to both
reconstruct and analyze the programming process [21], [38].

In this paper, we contribute to the understanding of novice
programming processes through the analysis of compilable
state, which refers to whether code compiles or not over
the course of completing programming assignments. Using
data from two contexts with facilities for keystroke data
collection, we analyze compilable state with respect to the
programming language, IDE support, progress in writing a
program, assignments, and students. Our research questions
for the present work are as follows.

RQ1 What factors affect compilable state?
RQ2 How do measures based on compilable state correlate

with academic outcomes?

II. BACKGROUND

A. Programming errors

Learning to program is, in part, about learning the notation
of the programming language and its syntax [15], [27] and
thus, it is not surprising that analysis of programming error
messages have received plenty of attention within computing
education research [7]. Studies have highlighted that a lot of
time is spent on figuring out “trivial mechanics” [37], that
solving common errors takes a similar amount of time for
high-performing and low-performing students [13], and that
some errors can take a considerable amount of time to fix
when compared to others [3], [13].

Context plays an important role in programmig errors [7].
For example, Denny et al. [14] observed that the majority of
programs submitted for assessment from an online drill and



practice system had syntax errors, but Vihavainen et al. [41]
noticed that the vast majority of submissions sent for assess-
ment from an IDE did compile. Similarly, an ITiCSE working
group [23] focused on source code analytics conducted a
replication study of [39], observing that one possible reason
for differences in the replication outcomes was that the new
dataset came from a context where students were provided
template code that did not initially compile, which was not the
case for the original study [23]. Naturally, the programming
language may also relate to the errors that students face during
programming; as an example, Stefik and Siebert [40] observed
that languages closer to the English language could be more
intuitive to learners. Consequently, it is meaningful to consider
also the native language of the learners, as done by Reestman
and Dorn [35], who studied BlueJ data and observed small
but statistically significant differences in error distributions
between country and language groups.

B. Programming process and performance

Analyzing sequential source code state data collected from
students’ programming process, researchers have developed a
variety of metrics to quantify the programming process (and
performance). In 2006, Jadud proposed a metric called the Er-
ror Quotient (EQ), which quantified the prevalence of errors in
subsequent compilations and consequently students’ ability to
identify and fix them [24]. Watson et al. [47] later expanded on
Jadud’s approach and introduced a new metric called Watwin
score that included the time that students took to fix errors as
an additional feature. Carter et al. [9] proposed a different
approach called the Normalized Programming State Model
(NPSM) that tapped into more fine-grained data collected
from an IDE, also considering errors from the perspective
of whether students had used debug functionality of the IDE
when fixing errors and looking into the prevalence of runtime
exceptions in addition to compilation errors. Following on
the work of Jadud, Becker [6] looked in more detail into
how errors repeated over the programming process, effectively
partially quantifying whether students had learned to avoid
errors. All of the approaches have been linked with student
performance in the respective analyses [24], [47], [9], [5].

The aforementioned approaches, with the exception of the
work by Becker, could be seen to quantify the programming
process and the construction of the respective metrics through
a state machine tuned to the respective contexts. Researchers
have also identified challenges in the reproducibility of the
results using data collected from other contexts [33], [1],
[36]. As an example, Petersen et al. [33] discussed the need
to fine-tune parameters of EQ for it to match a particular
context, finding that the efficacy of Error Quotient as a metric
for performance was rather context-dependent, while Richards
and Hunt outlined challenges with applying NPSM to data
collected from the BlueJ environment [36]. The granularity
of data used for constructing such models also relates to the
performance; as an example, Ahadi et al. [1] looked into
both EQ and Watwin score constructed based on IDE action
data (running, testing, or submitting programs) and pause data

(event pairs with pauses longer than ten seconds), and found
differences in the scores and their correlation with course
outcomes; Ahadi et al. also proposed and evaluated using
programming process data to build machine learning models
to predict course performance [1].

C. Fine-grained programming process data

A stream of research into the programming process that
has become more popular during the last decade has focused
on collection of fine-grained data from the programming
process [23]. This often constitutes collecting each indi-
vidual keystroke from the programming process, providing
researchers a more fine-grained view to how the program
is constructed. Such data can provide insight into e.g. how
novices learn to write simple statements [41] and into the
programming process [4], [38], as well as into the frequency
of compilation errors over the programming process [42].

D. Research gap

While there are plenty of studies that look into syntax errors
and errors in the programming process, as well as a handful
of studies that have looked into the analysis of keystroke
data, there is a gap in prior research in combining these two
streams. We observe the need to explore the quantification of
the programming process into a continuous state that describes
the code either as compiling or non-compiling in order to gain
more insight into the struggles of novice programmers.

III. METHODOLOGY

A. Context and data

For the present study, we used three datasets from two
contexts.

1) Python: We used the two public Python keystroke log
datasets published by Edwards [16], [17]. The 2019 dataset
contains keystrokes from 505 participants and 5 assignments
in a CS1 course and has 5 million unique events. Data was
collected using a very basic IDE called Phanon [18] that did
not have syntax error underlining. The 2021 dataset has 44
participants and 8 assignments in a CS1 course and has 1
million unique events. It was collected using the PyPhanon
plugin [19] to PyCharm. The PyCharm IDE has error underlin-
ing. Additionally, these datasets include students’ high school
GPAs, highest ACT score, grade on each assignment, and
scores on exams. Assignments were designed to teach founda-
tional programming concepts like variables, control structures,
functions, objects, class, etc. Exams are composed of multi-
ple choice, true/false, and fill-in-the-blank questions that are
automatically graded using our learning management system.
Many questions are general computer science questions (e.g.
What stores more data, 1Mb or 1Gb? but the majority of
questions show Python code and ask questions like "what is
output?" and "which is the missing line of code?" Students
in this context were undergraduates at a research university in
the United States, taking their first computer science course at
the university. They may have past programming experience
from high school courses or personal projects, but this course



is likely the first programming experience for many of them.
Computer science majors, which made up ˜30 % of students
in the 2021 cohort, are likely freshmen because CS1 is their
initial major-specific course.

2) Java: Java keystroke data was collected from a free
open online introductory programming course offered by a
Finnish research-first university. The course is offered as an
online e-book written in English that contains interleaved
theory, worked examples, and programming exercises (for
additional details on the course pedagogy, see e.g. [44], [43]).
The course covers the basics of programming using Java,
with an initial focus on variables and basic control structures,
followed by basics of object-oriented programming. In order to
complete programming exercises, course participants install an
environment which they use to work on exercises locally. The
environment collects programming process data (including
keystrokes), downloads course exercises for participants, and
provides the capabilities for running, testing, and submitting
exercises, which are assessed using an automated assessment
system (for details, see [45]). The course has no end of course
exam and participants are not eligible to receive university
credits for completing the course. A course certificate is
available upon completion, however. For the present study,
we use data from 304 participants who consented to their data
being used for research purposes (a total of 11 million events).
The data comes from the first four parts of the seven-part
course. The workload for the first four parts is approximately
3 ECTS1.

In total, this analysis uses 17 million keystroke events from
853 participants.

B. Terminology

The following terms are used throughout the remainder of
this paper.

• Event - an event is any recorded action taken by the
student. Events include keystrokes, pasting code into
the program, running the program, and submitting the
assignment.

• Compilable state - an event or sequence of events in the
programming process where the code compiles with no
errors (see below for more discussion on how this is
computed).

• Recovery - A recovery begins with an event that switches
the program from a compilable state to an uncompilable
state. The recovery continues until the first event the
returns the program to a compilable state. It is normal for
students to have various recoveries while programming,
often without realizing they have introduced or resolved
errors.

• Known Recovery - A known recovery begins when the
student attempts to run their program (Python) or presses
the compile button (Java) and the code has an error
preventing it from compiling. The known recovery ends

1European Credit Transfer System. One ECTS corresponds to approxi-
mately 25 to 30 hours of work, while 3 ECTS would amount to 75-90 hours
of work.

when an event returns the program to a compilable state.
The student thus knows that an error was present in
their program, even if they may be unaware of the exact
moment when they resolve the error.

C. Analysis

For the present work, we define compilable state as code
that compiles with no errors. The compilable state of a
program at a particular event was determined by re-creating the
file based on the keystroke data and then using programming-
language-specific functions to determine if the program would
compile immediately after that event was applied. This compi-
lable state is distinct from run events, which are events where
the student attempts to run their program, causing a compile
to occur and potentially logging either a compile-time or run-
time error. Both run events and compilable state are discussed
below.

Compilable state is affected by context differences. In
Python, only syntax errors are caught at compilation time,
meaning that many errors do not impact compilable state. In
Java, the compiler catches more errors, including type check-
ing, undefined variables, and undefined arguments in method
calls, which can all impact compilable state. For the present
analysis, in both contexts, we reconstructed the evolution of
students’ source code for the programming exercises, and
compiled the source code at each keystroke event.

To answer RQ1, What factors affect compilable state?,
we visually and statistically study keystroke data collected
from both contexts, scoping our work on contrasting com-
pilable state with five context- and programming process-
specific factors. To answer RQ2, How do measures based
on compilable state correlate with academic outcomes?, we
look into the proportion of compilable state events in the
programming process as well as into recoveries from error
states and contrast them with students’ exam scores, high
school GPA, and highest ACT score, collected for one of the
Python datasets.

In the analysis and in reporting, we use the term compile
and run interchangeably to indicate an event where, in
Python, the student runs the code and in Java the student clicks
a button labeled “run” that compiles and runs the code. While
these events are initiated as runs, a compile occurs in both the
Python and the Java contexts.

D. Statistical tests

We report p values of all statistical significance tests.
Our statistical tests are two-tailed. We follow the American
Statistical Association’s recommendations to use p values as
one piece of evidence of significance to be used in context
rather than using an alpha threshold [46].

IV. RESULTS

A. Factors that affect compilable rate

Our first research question RQ1 is: What factors affect
compilable state? We discuss a number of specific factors:
contextual differences (including programming language and



Fig. 1: Change in the percentage of events in a compilable
state over the course of tasks. The offset between Java and
the other lines is a result of programming language and other
context differences. Despite this offset, the 2019 Python data
and the Java data follow a remarkably similar trend line. The
Python 2021 IDE provided continuous highlighting of syntax
errors, unlike the Java or 2019 datasets. All 3 datasets show
an increase in compilable state at the end of the programming
process.

whether the IDE offers underlined error hints); how far along
a student is in the process of writing a program, solution
length, and the type of assignment. We leave other factors,
such as instructional methods, student demographics, time of
day, time remaining before due date, and IDE complexity, to
future work.

1) Context: programming language: Overall, when com-
paring Python and Java, we observe that Python code is more
frequently in a compilable state (56.4% of all events) than Java
code (23.7% of all events). We see in Figure 1 that students’
Python code is in a compilable state far more often than
Java code. However, since all Java data in these datasets was
collected in an open-course context in Finland and all Python
data was collected in a CS1 course in the United States, the
magnitude of this impact cannot be separated from the impact
of these other contextual factors.

2) Context: IDE error annotations: We analyzed whether
using an IDE that underlines errors affects the percentage of
events in a compilable state by comparing data before and
after an IDE change in the Python data. Moving from an
IDE with no highlighting of compilation errors (2019 dataset)
to one that continuously highlighted compilation errors (2021
dataset) increased the percentage of events in a compilable
state from 58% to 62% (Figure 2). A one-sided t-test for these
two averages yielded a t-statistic of −1.444 and a p-value of
0.0746, indicating a possibility that the improvement stemmed
from the IDE change.

We also look at the effect of context on recoveries. We de-
fine a recovery as the series of events starting with an event that
moves the code into an uncompilable state and ending with

Fig. 2: Distribution of students’ average compilable rate by
year. The 2019 students did not have underlined error hints
whereas the 2021 students did.

an event that restores the code to a compilable state. Recovery
length is the number of events in the recovery. Informally, the
recovery length is how long it takes the student to get back
into a compilable state. Recoveries happen frequently: when
a student is typing a line of code the incomplete line will
likely be syntactically incorrect until it is completed. Students
may or may not be aware whether their code is compilable at
any given moment. We define a known recovery as a recovery
that begins with a compile that fails. In this case, students are
aware that they are in an uncompilable state. It turns out that
whether the recovery is known or not makes a big difference
in students’ behavior.

To analyze student behavior in recovery, we look at the
“recovery ratio”, which we define as the number of events
until the next compile divided by the number of events to
the end of the recovery. See Figure 3. A recovery with a
low ratio (a dot that appears below the y = x line in the
figure) means that the student compiled before the recovery
was complete, resulting in a failed compile. A recovery with
a ratio on or just above 1 (a dot on or just above the line)
means that the student compiled just after the error was fixed.
And a recovery ratio above 1 (above the line) means that the
student continued programming after fixing the error without
stopping to compile.

In Figure 4, we see the distribution of percentage of recov-
eries per student for which students compiled before returning
to a compilable state. In recoveries, students who used an
IDE with error underlining (2021 context) compiled before
recovering less often (µ = 1.3%) than students without error
underlining (2019 context, µ = 4.8%), with strong significance
(t = −8.79, p = 2.46−17).

3) Progression in writing a program: Figure 1 shows the
percentage of events in compilable state as students progress
towards completion of a programming assignment, divided
into ten event bins. From Figure 1, we observe that, in the
2019 Python and Java data, students generally start out their



(a) 2019 recovery (b) 2019 known recovery

(c) 2021 recovery (d) 2021 known recovery

Fig. 3: Recovery ratio and known recovery ratio. Each point on the charts represents a recovery. A recovery is the sequence
of events to resolve a compilation error in a student’s program. A known recovery begins when a student attempts to run or
compile their program and ends when the program returns to a compilable state. For instance, if a student introduced a syntax
error, typed a few more lines of code, attempted unsuccessfully to compile their program, and then spent several more events
fixing the error, the recovery would start with the introduction of the error, the known recovery would start with the attempted
compilation, and both would end simultaneously. The x axis is the recovery length and the y axis is the number of events until
the next compile. The diagonal line is at y = x. Dots below the line indicate recoveries during which the student attempted to
compile/run their program before the error was fixed. Java data is similar to 2021 data.

assignment with code that is compilable moderately often.
Then as they progress through their work, their code is
compilable less and less often, until it reaches a minimum
between 1/5 and 2/5 the way to completion. The code then
gradually becomes more compilable until the max is reached
near submission. This visibly differs for the 2021 Python data
with continuous error highlighting, where there is a more
stable positive progression throughout.

When looking only into events when students run their code,
illustrated in Figure 5 over the progression in a program, we
see a trend of increasing compiles towards the end culminating
in a spike in compile frequency in the last tenth of events. It
also seems that Java students compile their code less often in
the middle of the process when compared to Python students.

4) Solution length: The length of an assignment submis-
sion, measured by the number of events, appears to also be
related to the percentage of compilable events in a solution.
The percentage of compilable events and solution length are
correlated in the Python context (r = −0.520, p = 2.11−283)
and in the Java context (r = −0.169, p = 1.27−254). Here, ap-
proximately 27% of the variance in percentage of compilable
events is explained by number of events for Python, while the
corresponding number for Java is 2.9%.

5) Variation by assignment: Recall that we define a re-
covery as a series of events between an event bringing the
code into an uncompilable state and an event restoring the
code to a compilable state. Figure 6 shows the distribution of
recoveries taking more than 25 events per every 10,000 events
grouped by assignment, showing that the recovery lengths can



Fig. 4: Distribution of the percentage of recoveries per student
for which students ran the code before the error was fixed.

be very different for different assignments. Note that the 2019
assignment 4 had more long recoveries per 10,000 events than
the other assignments for both fall and spring semesters. This
may indicate that assignment was unusually complex.

B. Correlation with academic outcomes

Our second research question RQ2 is: How do measures
based on compilable state correlate with academic outcomes?

To test this question we used our 2021 Python data, as it is
the only dataset used in this paper that has exam score, GPA,
and ACT score. We failed to find a statistically significant
correlation between the compilable rate and students’ exams
scores (r = 0.0347, p = 0.43), high school GPA (r =
−0.0912, p = 0.61), or highest ACT score (r = 0.248, p =
0.16). The lack of significance here is interesting: students
who kept their assignments in a compilable state throughout
the programming process did not do significantly better on
exams than those who did not.

While compilable rate was not correlated with outcomes,
recovery ratios are correlated. For each student, we calculated
the percentage of their recovery ratios that were above 1. For
example, if a student’s percentage is 50%, then during half
of their recoveries, the student compiled at least once before
fixing the error. This percentage of recovery ratio for each
student is weakly correlated with average exam score (r =
0.142, p = 0.0010) using the 2019 and 2021 Python datasets,
both of which have exam score data.

V. DISCUSSION

A. Contextual differences

Our data shows a number of contextual differences, both
between the Java and Python context, but also between the
Python context with and without continuously available error
feedback from the IDE. Perhaps the most notable difference
between the contexts was the substantial difference in the
proportion of events that compile, where Python programs
were more than twice as likely to be in a compilable state
than Java programs. We see two key explanations to this:

(a) Python

(b) Java

Fig. 5: Distribution of run events during the course of program
development. Failed run events are in orange; successful are
in blue. The frequency of run events increases dramatically
near the end of writing the program, with a higher percentage
of successful compiles in both programming contexts.

(1) differences in compilers and (2) differences in verbosity.
In general, Python compilers are more forgiving than Java,
with many errors, such as type checking errors, visible only
at runtime. Since our Python data does not show whether a
run was successful or not, our statistics only indicate whether
the Python code had a syntax error or not. Thus, with more
errors occurring at compile time, the Java code should have
higher error rates than Python.

Regarding verbosity, Java is also a more verbose language,
with students required to type relatively large numbers of
characters when compared to Python. It is important to note,
however, that the difference between the Python and Java
event compilability percentages appears to be roughly linear
as students write their programs (c.f. Figure 1). That is, an
approximately 30 percentage point difference in the rate of



Fig. 6: Distribution of recoveries taking more than 25 events divided per 10,000 events in the assignment per student. Java
distributions are similarly varied but not displayed. Assignment names beginning with ’Assign’ are from the 2021 cohort,
assignment names beginning with ’p’ are from the 2019 cohort, with ’f’ and ’s’ indicating whether the results are from the
fall or spring semester respectively. Some outliers are omitted from the visualization.

compilability separates Python and Java at the beginning, at
the minimum, and leading up to submission. We also observed
that Java students were less likely to run their programs in the
middle when compared to Python students (c.f. Figure 5).

When considering the effect of the programming environ-
ment highlighting compilation errors, we observed that events
collected in the Python environment with error highlighting
compiled 62% of the time, while events compiled in the
Python environment with no error highlighting compiled 58%
of the time. These results strengthen the observation of [25],
who suggested that students recovered from errors quicker
in an environment that continuously compiled the code and
provided a highlight of lines that did not compile. Visual in-
spection of Figure 1 also suggested that the error highlighting
helped students maintain their code in a compilable state, as
there was no noticeable drop in the process similar to what
was observed with the other datasets.

From the recovery data shown in Figures 3 and 4 we see
that IDE error highlighting is doing its job – students are more
likely to successfully fix their errors before compiling when
IDEs highlight errors. It even enables students to continue
programming with confidence after fixing an error without
being burdened with taking time to recompile.

B. Looking into the programming process

When looking into the programming process, we observed
two key characteristics present in both contexts. First, as
shown in Figure 1, we observed that the programming process

included a dip in compilable rate. Second, as shown in
Figure 5, we observed that the rate of running the programs
was not constant throughout the process and that students
were inclined to run their programs more towards reaching
a solution.

When considering prior studies that have focused on analy-
sis of submissions (e.g. [39]), which could be seen as a form
of running the code when no local testing possibilities are
available, our results indicate that such analyses might be miss-
ing significant amounts of information from the process. This
concern has been highlighted also in the past, when comparing
keystroke data and data collected with other granularities [42],
[23].

Differences in data granularity (and contexts) could also
outline some insight into the challenges of generalizability
of methods used for assessing students’ performance based
on programming process (c.f. [24], [47]), as discussed e.g.
in [33], [1]. When considering the programming process as a
continuum of keystroke events, it is only natural that some of
the events compile and some of them do not compile. Methods
looking into the process at multiple granularities, perhaps
building on repeated error density [6], should be looked into to
quantify what the students are doing and how they are faring
with what they are trying to do.

With more open datasets such as [16], [17], there is a possi-
bility to reinvigorate research into how novices build programs
(c.f. [4]), where classic studies have observed behaviors such
as stoppers, movers, and tinkerers [32], as well as outlined



how programs are constructed [11].

C. Towards higher compilation rate

When looking into the programming process, the question
that naturally emerges is what students are trying to achieve in
the process of writing a computer program. Are they writing
the entire program and then debugging it or are they gradually
building features into a program and debugging each feature?
The data appears to support the idea that students are tending
to write more features at the beginning of the code-writing
process and testing (and potentially fixing) them en masse.
This possibility is supported by Figure 5, which outlines the
proportion of run events throughout the programming process.
As students write their programs they compile and run their
code more frequently, culminating in a spike in run frequency
in the last tenth of events.

While the above could represent a successful process for
some students, prior research has over and over again dis-
cussed the challenges related to the syntax of programming
languages [15], [27], [3], [13], [7]. We see clear room for
improvement in the proportion of events that compile, and
call for researchers to look into this aspect. We envision one
potential help in the form of an environment with more specific
indicators of compilable state, which in turn could highlight
the importance of trying to maintain code in a compilable
state for students. Drawing inspiration from [34], who used
semaphors in a programming environment to indicate that
students should run their programs every now and then, we
see that researchers could both visualize the compilation rate
over time to students, as well as create an intervention similar
to [34]. In general, leading to higher compilation rate could
help students run their programs more often, which could
help them monitor whether they are proceeding in a favorable
direction.

D. Compilable state and academic outcomes

While we call for helping students in the programming
process, we acknowledge that in the present study we observed
that a student’s compilable rate is not necessarily directly cor-
related with a student’s exam scores, high school GPA, or ACT
scores. The implication is that asking students to remain in a
compilable state as much as possible may not actually lead to
improved course outcomes. Indeed, recovery ratio, a measure
of a student’s awareness of their compilable state, is correlated
with exam score. Perhaps the answer is not that students
should compile more often but that they should increase their
ability to independently detect errors. This may run counter to
common wisdom, suggesting pedagogies that teach students
to detect errors without a compiler and, potentially, without
the error underlining that has shown itself so useful in this
very paper. As our measures were relatively simple, we see
potential of adapting prior methods used for quantifying the
programming process and performance (c.f. [24], [47], [9],
[6]) to the granularity of keystroke data.

E. Limitations of work

This work has several limitations, which we discuss next.
The contexts are considerably different beyond the difference
in programming language; the Python dataset came from a
US University classroom context, while the Java dataset came
from an open online course. There are likely differences in e.g.
pedagogy, assignments, support, etc. These difference certainly
could have an impact on student programming behavior,
impacting compilable state, recoveries, etc.

The programming language characteristics of Python and
Java also limit the comparability of their respective compilabil-
ity rates. For instance, since Java is a statically-typed language,
its compiler will raise type errors, whereas dynamically-typed
Python’s compile() function will not.

Regarding the participants, there is a selection bias in
that students and participants allowed their use of data for
research. Additionally, we do not know the prior programming
background of the participants, which would likely effect how
they fare in programming courses; as the Java course was an
open online course, it is possible that it is more likely attended
by those already somewhat familiar with programming, which
would make our observations about the differences in compi-
lation rate somewhat more alarming.

While the 2019 and 2021 cohorts of students in the US
context are more similar to each other than the open course
students, there are some limitations to their comparability.
While both cohorts were taking the same CS1 class targeting
the same learning objectives, their assignments were different
problem sets and the course instructors were different. Addi-
tionally, the COVID-19 pandemic could have changed enroll-
ment patterns for college students between the two student
cohorts. Any of these factors could have impacted student
programming behavior. Of these, we explore the impact of
syntax highlighting and differing assignments in our analysis.
We also acknowledge that the 2021 dataset is much smaller
than the 2019 dataset.

VI. CONCLUSIONS

In the present work, we explored keystroke-level program-
ming process data collected from two universities, one with
Python data and one with Java. Because our tools, analysis
code, and much of our data is open2 [16], [17], re-analysis and
replication studies [23] should be straightforward. Compiling
each event in the keystroke data, we looked into factors
contributing to compilable state and how the compilable state
relates to academic achievement. To summarize, our research
questions and their answers are as follows.

(RQ1) What factors affect compilable state? We observed
that (1) Python programs were in a compilable state more fre-
quently than Java programs; (2) IDE support for highlighting
syntax errors may increase overall proportion of compilable
events; (3) programs are less likely to be in a compilable state
in the middle of the programming process and reach a higher

2Data processing, analysis, and visualization are available at
https://github.com/stevescott32/compilable-state



proportion of compilable events towards the end of the pro-
gramming process; (4) students are considerably more likely to
run their programs at the end of the programming process than
early on in the programming process; (5) number of events in
the programming process correlates negatively with proportion
of compilable events, in both contexts; and (6) recovering from
a compilation error differs between assignments.

(RQ2) How do measures based on compilable state corre-
late with academic outcomes? We found no strong evidence
supporting that the proportion of compilable events would
be linked with students’ exam scores, high school GPA, or
their highest ACT score, but found that student behavior while
recovering from errors correlates with exam score.

Overall, our results provide more evidence of contextual
factors present in many programming courses, which in turn
can help interpret study outcomes and consider the general-
izability of results from one context to another. Our results
also provide further support for collecting and analyzing
fine-grained process data for understanding how programs
are constructed [42]. In particular, our data showed a large
proportion of run events towards the end of the process of
solving an assignment, which would result in lack of insight
especially into the early construction process and possible
struggles, if one would rely on data collected only from the end
of the process. We also call for researchers to develop methods
for analyzing and understanding the programming process and
struggles from fine-grained data, similar to [24], [47], [9],
[6]. Finally, we call for researchers to develop and measure
means to help students maintain their code in a compilable
state, and highlight a possible inspiration for that work from
the development of programming environments with support
for emphasizing the need to run programs [34].

As a part of our future work, we are looking into language
independent approaches for analyzing programming process
data. Prior research has shown promise in using graph- and
tree-like structures such as control flow graphs [30], parse
trees [42], abstract syntax trees [20], and control flow ab-
stract syntax trees [22] for analyzing and representing student
programs. Using such structures for program representation,
streams of individual events could be grouped together and
linked to certain changes in the structure, which in turn can
allow us building a stronger understanding of the types of
structures that students struggle to work with.

VII. DATA AVAILABILITY

The Python datasets used in the study are openly avail-
able [16], [17]. The Java dataset is not openly available as
programmers can be identified from typing data [29] and
consent for sharing the data in a non-anonymized format
has not been granted. We are, however, exploring options for
releasing the data in an anonymized format (combining [28]
with AST transformations).
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