Instructor Perceptions of Al Code Generation Tools - A
Multi-Institutional Interview Study

Judy Sheard Paul Denny Arto Hellas
Monash University University of Auckland Aalto University
Melbourne, Australia Auckland, New Zealand Espoo, Finland
judy.sheard@monash.edu p-denny@auckland.ac.nz arto.hellas@aalto.fi
Juho Leinonen Lauri Malmi Simon
University of Auckland Aalto University Unaffiliated

Auckland, New Zealand
juho.leinonen@auckland.ac.nz

ABSTRACT

Much of the recent work investigating large language models and
Al Code Generation tools in computing education has focused on
assessing their capabilities for solving typical programming prob-
lems and for generating resources such as code explanations and
exercises. If progress is to be made toward the inevitable lasting
pedagogical change, there is a need for research that explores the
instructor voice, seeking to understand how instructors with a
range of experiences plan to adapt. In this paper, we report the
results of an interview study involving 12 instructors from Aus-
tralia, Finland and New Zealand, in which we investigate educators’
current practices, concerns, and planned adaptations relating to
these tools. Through this empirical study, our goal is to prompt
dialogue between researchers and educators to inform new peda-
gogical strategies in response to the rapidly evolving landscape of
Al code generation tools.

CCS CONCEPTS

« Social and professional topics —» Computing education.

KEYWORDS

programming education, instructor perceptions, large language
models, LLMs, Al code generation, interview study, generative Al

ACM Reference Format:

Judy Sheard, Paul Denny, Arto Hellas, Juho Leinonen, Lauri Malmi, and Si-
mon. 2024. Instructor Perceptions of AI Code Generation Tools — A Multi-
Institutional Interview Study. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2024), March 20—
23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3626252.3630880

1 INTRODUCTION

The landscape of computing education is evolving rapidly, with
large language models (LLMs) powering a new generation of tools
such as ChatGPT and GitHub Copilot driving the transformation [9].

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03.
https://doi.org/10.1145/3626252.3630880

Espoo, Finland
lauri.malmi@aalto.fi

Wadalba, Australia
simon.unshod@gmail.com

The increasing use of these Al applications brings both challenges
and opportunities to educators in the field [30]. One widely voiced
concern is the capability of the tools to accurately solve homework
problems and exam questions, which may lead to student over-
reliance [11, 31]. On the other hand, recent work has shown that
Al tools can be used to produce high-quality learning resources,
including programming exercises [32], explanations of code [24, 28],
and even on-demand feedback to students [27].

This fast-paced evolution has sparked discourse on the benefits
and challenges of LLMs [17]. Several interview and survey studies
have attempted to gauge instructors’ perceptions and attitudes
toward Al-enabled tools in the broader educational context [2, 5, 16].
However, such studies do little to account for the unique challenges
specific to computing education. For example, the concept of code
reuse, where educators often encourage students to use libraries
or other pre-existing code. This teaching practice can blur the line
between code reuse and plagiarism, making it difficult to establish
clear guidelines around acceptable practice [1, 33, 34, 36].

To date, there has been very little work investigating the percep-
tions of computing instructors toward Al code generation tools. We
are aware of just two notable, and very recent, exceptions. Lau and
Guo [19] interviewed 20 instructors across nine countries, present-
ing a hypothetical scenario in which Al tools worked perfectly and
asking how they planned to adapt. Zastudil et al. [39] interviewed
12 students and six instructors, all from the same institution, in-
vestigating experiences and preferences for Al tools in computing
classrooms.

In the present study, complementing the findings of Lau and Guo
[19] and Zastudil et al. [39], we outline results from an interview
study where we interviewed 12 instructors from three countries
in order to capture a diverse range of perspectives on Al applica-
tions in computing education. To ground our findings in real-world
experiences, we asked the instructors about their familiarity with
and perceptions of LLMs, and their proposed strategies to aligning
assessment practices with the evolution of the field and to tackle
concerns of plagiarism.

2 RELATED WORK

This study builds upon a growing body of research on the appli-
cations of large language models (LLMs) in computing education,
which has received significant attention over the past year.


https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0003-2285-283X
https://doi.org/10.1145/3626252.3630880
https://doi.org/10.1145/3626252.3630880
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626252.3630880

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

2.1 Large Language Models in Computing
Education Research

A large portion of LLM-related research in computing education
has centered on assessing the capability of LLMs for solving pro-
gramming exercises. One of the first papers on LLMs in computing
education looked into how well the Codex model can solve intro-
ductory programming exercises [11]. The study found that Codex
could solve around 80% of introductory programming (CS1) prob-
lems that had been included in past exams, a performance that
would put Codex in the top quartile of students in the course. Simi-
lar performance was found in a follow-up study that used Codex
to solve more complex problems in data structures and algorithms
(Cs2) [12].

With the subsequent emergence of tools such as GitHub Copilot,
which is powered by Codex, researchers have looked into the capa-
bilities of these tools, noting that they are able to solve around half
of introductory programming exercises directly, and another 30%
with some additional ‘prompt engineering’, i.e., additional guidance
provided to the model as part of the prompt [7]. However, other
work has found that Copilot might struggle to follow instructions
when used to solve programming exercises [37], and that LLMs can
struggle to solve computational thinking tasks [3] and when asked
to identify bugs in code, may point out non-existent issues [15].

The emergence of LLM code generation tools such as Copilot
has also led to work examining students’ interaction with such
tools. Interacting with an LLM has been observed to lead to higher
performance in code writing tasks but to little differences in learn-
ing gains [18]. Novice programmers also sometimes struggle to use
Copilot; for example, spending a lot of time unsuccessfully trying
to coerce Copilot to produce specific code [31]. One recent sugges-
tion has been to train students to better interact with LLMs using
‘prompt problems’ [8].

Another stream of research has explored the use of LLMs to
create and enhance educational resources such as programming
exercises [32], code explanations [24, 28, 32], and programming
error messages [25, 29]. LLMs can be used to create novel pro-
gramming exercises with prescribed themes (such as basketball)
and programming concepts (such as loops) [32], as well as line-by-
line explanations of code, which could potentially benefit novice
programmers [32]. Two follow-up studies found that novices use
explanations created by LLMs and generally rate them as being
useful for learning [28], and that the code explanations created by
LLMs are rated as being better summaries of the code and more un-
derstandable than those created by students [24]. LLMs can also be
used to enhance programming error messages, researchers suggest-
ing that the enhanced error messages were better than the original
ones around half of the time [25]. Recent work has also highlighted
the possibility of controlling the comprehensiveness and accuracy
of syntax error feedback [29].

2.2 Student and Instructor Perspectives of Large
Language Models

Literature looking into student and instructor perspectives of large

language models within CER is still scarce, though there are a few

notable exceptions. An interview of 20 instructors conducted by

Lau and Guo [19] found that in the short term, most instructors

Judy Sheard et al.

intended to implement immediate measures to deter cheating, while
the long-term plans were divided. Some instructors were in favor
of banning AI tools to maintain a focus on teaching programming
fundamentals, whereas others advocated for the integration of Al
tools into courses to prepare students for future job markets in
which AI would be widely used. The study, however, involved a
hypothetical LLM that worked flawlessly, serving as an ‘oracle’, a
level that current LLMs still appear far from attaining.

Zastudil et al. [39] interviewed 12 students and six instructors.
Students said that the Al tools reduced the effort of writing code,
helped them to find learning materials, and allowed them to avoid
busy work. They also voiced concerns about over-reliance on and
trustworthiness of the Al tools, and noted that the availability of
such tools might increase plagiarism. Instructors saw benefits of
the Al tools in providing explanations of code, helping students to
find inspiration and to get feedback, and allowing access to high
quality learning resources. The instructors, too, expressed concerns
about over-reliance and plagiarism, and pointed out issues with the
trustworthiness of the systems. Concerns about over-reliance were
also expressed in a study exploring student use of Copilot, with
Prather et al. [31] noting that students expressed concerns about
over-reliance despite feeling more productive when using an LLM.

The present study expands on these prior works by exploring
instructors’ views on programming education in the era of Al code
generation tools.

3 METHODOLOGY
3.1 Research Questions

Our study is based on three research questions.

(1) What are the threats and opportunities for learning program-
ming from AT tools?

(2) What are the threats and opportunities for teaching and
assessment of programming from Al tools?

(3) How should programming education be changed when stu-
dents are using Al tools?

3.2 Approach

Our study employs a qualitative research methodology, specifically
a phenomenological approach, with the goal of gaining deep in-
sight into programming instructors’ experiences, perceptions, and
attitudes toward the use of Language Learning Models (LLMs) such
as ChatGPT and Copilot. This approach was chosen to explore the
complexities of teaching experiences and the instructors’ nuanced
views on the integration of advanced programming aids into their
pedagogical practices.

3.3 Participant Recruitment and Characteristics

Twelve programming instructors were purposively selected from
universities in Australia, Finland and New Zealand to capture a
broad range of teaching experiences, programming contexts, and
institutional practices. The universities were selected to represent
a mix of institutions with varying sizes and geographical locations.
All interviewees had considerable experience in teaching program-
ming, with a range of 10 to 50 years. Most participants (9/12) had
experience in teaching both introductory and advanced courses,



Instructor Perceptions of Al Code Generation Tools — A Multi-Institutional Interview Study

while one had only taught introductory courses and two had only
taught advanced courses (CS2 and above).

3.4 Data Collection

The primary method of data collection was semi-structured inter-
views lasting 40-60 minutes, providing a balance between gaining
consistent data across participants and allowing individual experi-
ences to emerge. The interviews were conducted either in person
or via Zoom, based on participant preference and convenience. The
interviews were conducted between December 2022 and May in
2023. The interview guide was carefully constructed, starting with
general questions about the participants’ teaching experience and
gradually moving to more specific inquiries about the potential
use of LLMs in programming education. The interview guide is
available as an online appendix’.

The interview guide was divided into several sections. First, in-
structors were asked about their background, including their length
of teaching experience, the types and sizes of programming courses
they had taught, and the programming languages and supporting
technologies they had used. Next, they were asked to reflect on
the learning objectives, assessment methods, and their alignment,
in their recently taught programming courses. Then they were
prompted to share their views on the potential opportunities and
threats of using Al tools in their courses, and their implications for
student learning and plagiarism. Lastly, they were asked to envision
potential revisions in pedagogical practices due to the use of such
tools, and to contemplate the future landscape of programming
education.

Before the interview, participants were shown a brief video of
Copilot to ensure they had a shared understanding of its features
and functionality. This was critical to stimulate meaningful reflec-
tions and discussions on its potential implications.

3.5 Analysis

All interviews were audio-recorded with the prior consent of the
participants and then transcribed verbatim to preserve the richness
of the data. The transcriptions were pseudonymized to maintain
participant confidentiality.

The data were analyzed following Braun and Clarke’s six-step
process for thematic analysis [4]. The first author initially read and
reread the transcripts, noting initial ideas and generating initial
codes. These codes were sorted into potential themes and sub-
themes, which were reviewed and refined to ensure that they ac-
curately represented the coded extracts. The codes, themes, and
subthemes were then reviewed by another author. Any differences
were discussed and agreement reached.

The themes were then organized into three groups, each relating
to one of the research questions. Eight themes were identified. Two
themes learning and student use of tools related to RQ1, three themes
teaching, assessment and academic integrity, related to RQ2, and
three themes programming education, policy and Al tools related to
RQ3.

! Available at https://osf.io/2czg6/?view_only=ec32ff862bf34aba9e850de268139289

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

3.6 Ethical Considerations

This study was conducted in accordance with ethical guidelines
established by the respective universities of the researchers and was
approved as appropriate by their Institutional Review Boards (IRB).
All participants were provided with an informed consent form that
detailed the study’s purpose, the nature of their participation, and
their right to withdraw at any time without penalty. To ensure
privacy and confidentiality, data was shared among the researchers
only in a pseudonymous format.

4 RESULTS

The 12 interviewees, four female and eight male, came from six in-
stitutions in Australia, Finland and New Zealand. The interviewees
had a range of experience with Al tools, had seen the tools demon-
strated, and were knowledgeable about their capabilities. Four of
the interviewees had played with the tools generally and six had
explored the capabilities of the tools with their own coursework, for
example by generating course content and testing the capabilities
of the tools to generate and explain solutions.

We report the findings of the interview data analysis under each
of our three research questions. Codes from I1 to I12 were assigned
to the 12 interviewees.

4.1 ROQ1: Threats and Opportunities for
Learning Programming

The interviewees mentioned a number of ways in which Al tools
could assist students in their learning of programming but they
also expressed many concerns.

A useful feature of the tools is they can be used to readily gen-
erate different examples of code. This can be used by students to
demonstrate concepts and could motivate learning. The tools can
be a source of support for students in addition to their teachers and
classmates, providing individual, tailored, and endless explanations.

If a student is confused about a concept, they can sit with
ChatGPT and it will talk to them for hours about that
particular concept. (13)

A particular feature of Copilot is that it can give students a start-
ing point if they are stuck, providing a structure and sequence of
code. One interviewee likened this to fading worked examples [13],
where students can work with some concepts but not have to re-
member every little detail of the syntax. The fact that generated
code is not always correct or appropriate was seen as a positive as
this means that students need to read the code and understand it
in order to work out how to adapt or fix it, and they would learn
from doing this.

A couple of interviewees proposed that Copilot could help stu-
dents achieve far more than they could on their own, but only if
they know how to program. They cautioned that this was not the
case for novice programmers, who would not necessarily know
what instructions to give to Copilot.

All interviewees expressed concerns about students missing
out on learning by using Al tools, a similar finding to the study
by Zastudil et al. [39]. A common concern was that students would
not go through the crucial thinking processes and steps necessary
to learn programming. A student may achieve a correct solution to


https://osf.io/2czg6/?view_only=ec32ff862bf34aba9e850de268139289

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

a problem through using an Al tool, but then have no idea how to
solve a different problem without the tool. Over-reliance on Al tools
for solving small problems in introductory programming classes
means that students would not learn the fundamental elements of
programming and not be prepared for higher level courses with
larger tasks that Copilot would not be able to answer. The danger
is that students can use the tools and believe they are learning. As
one interviewee remarked, “it is a really great tool to create code but
also a really great tool to prevent yourself from learning” (19).

The issue of student trust in Al tools was raised by several in-
terviewees who were concerned that students would not always
be able to judge the correctness of a solution produced by an Al
tool and could be misled or confused by a wrong solution. Such a
trust in Al tools could have a negative impact on their learning. A
similar issue was raised in the study by Zastudil et al. [39].

A deeper issue was raised about responsibility for learning. By
using a tool such as Copilot to write the programming code for
their learning tasks, the students are, in effect, using the tool to
learn to program for them. Although students may view this as
learning with Copilot, the students are in effect giving agency to
Copilot to learn for them. One interviewee saw this as a form of
surrogacy, which of course will not work. Learning is the student’s
own responsibility, although teachers play an important role.

It’s teachers’ responsibility to motivate them and make such
a problem that [students] are keen to solve and in a way
that they actually would like to learn something and realize
that they need these skills also in the future. (I7)

4.2 RQ2: Threats and Opportunities for
Teaching and Assessment

Interviewees suggested various ways the Al tools could assist them
with teaching and assessment. They also saw a number of threats
from the tools and offered different strategies for addressing these.

Most ideas for the ways Al tools could help with teaching and
assessment were related to efficiency in the preparation of learning
and assessment tasks. For example, the tools could be used to create
a bank of exercises which would provide a greater number and
variety of programming tasks than is typically feasible at present.
An innovative idea proposed by one interviewee was the creation
of personalized tasks that are related to the students’ own interests,
which could help motivate the students to complete the tasks.

Several interviewees described specific learning tasks that the
tools could facilitate. For example, using an Al tool to generate four
versions of a simple program using different variable names and
asking the students to comment on the comprehensibility of the
program code; or using an Al tool to generate faulty solutions to a
problem and asking students to identify the problems. This particu-
lar example would serve to demonstrate to students the potential
problems with Al tools, and would be particularly convincing if
done in a live setting.

AT tools could be used to generate solutions to exercises. This
can be a way of ensuring that exercises are at the right level of
difficulty for the students to solve. This could also assist in the
preparation of marking guides for assessment tasks.

There were also suggestions that the Al tools could be incor-
porated into the teaching programs of higher level programming

Judy Sheard et al.

courses where the students work on projects. By allowing the use
of Al tools the students could work alone or in groups to produce
larger software systems than currently feasible.

An interesting use of Al tools proposed by one interviewee was
an automated system to give feedback to students when they seek
help. As the interviewee proposed, “we ... can give feedback written
by a human, or feedback that looks like it was written by a skilled
TA, but it is from a large language model” (110).

The main threats from AI tools related to teaching were the
teachers’ lack of preparedness and not knowing how students would
use the tools. Several interviewees mentioned the need to suddenly
rethink and redesign their courses, as all the current exercises they
had for the students could be completed by the tools. The challenge
was to find when it would be beneficial to use the tools in the
teaching program and when it could cause harm. ‘T think part of
the answer is in persuading [students] that there really is a point in
learning to program for themselves” (I1).

Assessment was the area where interviewees perceived the most
threats, which has also been found in other studies [19, 39]. The
main concern was with students using the tools to assist with as-
sessment tasks. If Al tools are allowed in the preparation of an
assessment task then it is difficult to assess the level of understand-
ing that the students have achieved through completing the task.

Of more serious concern was the unauthorized use of the tools
for assessment tasks, typically take-home assignments. Several
interviewees saw this as a form of contract cheating:

...there have always been so many ways of cheating, but I
don’t think I've ever been aware of such an obvious, cheap,
and easy way of cheating. Students can get [an Al tool] to
answer any question I can ask them at the moment and
therefore I have lost my ability to confidently assess any
work that students hand in. (11)

This form of cheating has a negative impact on the education envi-
ronment and is unfair to students who spend the time to complete
the task as intended but get a comparable mark to the student who
used an Al tool.

A challenge is that contract cheating via an Al tool is difficult
to detect. A number of approaches were suggested for verifying
that the submitted work is that of the student. One interviewee
mentioned tools for detecting Al-generated content, but cautioned
against their accuracy. A couple of interviewees suggested auto-
mated systems to monitor assignment process, either by taking
snapshots of the code at different stages of production or by gath-
ering keystroke data. In contrast, several interviewees proposed
using oral assessment to verify that the work submitted is that of
the student and not of an Al tool.

Some interviewees suggested taking an educative approach by
ensuring clear guidelines for the use of Al tools and requiring
students to acknowledge any part of their submitted assessment
work that was produced with the assistance of an AI tool. This
would allow the assessment grading to focus on the code produced
by the student and there would be no plagiarism to deal with.

Many interviewees argued the need for some form of invigilated
assessment to monitor potential use of the tool, and a number
mentioned an exam in a controlled environment. This is despite the



Instructor Perceptions of Al Code Generation Tools — A Multi-Institutional Interview Study

recent trend in many institutions to move from exam assessments
to more authentic forms of assessment.

Overall, it was recognized that there is a need to rethink assess-
ment design.

...we are clearly living in a time in which we have to com-
pletely rethink computing education, and particularly the
assessment side of computing education, because we can
no longer assess students in any of the ways we have been
trying to assess them. (I1)

The main idea proposed to meet this challenge was using unique
and individualized projects, possibly incorporating the use of Al
tools. Projects were seen as an authentic way of assessing, and
would provide opportunities for students to gain experience using
the Al tools in a meaningful setting. Portfolio assessments were
also mentioned, but they were viewed by some as problematic as
it is now more difficult to tell whether the portfolio is the work of
the student.

4.3 RQ3: How Programming Education Should
Change

Interviewees agreed that the advent of the Al tools will dramatically
change programming education and this was a daunting prospect.
As one interviewee remarked, “it’s frightening because it effectively
throws away most of the efforts we have gone to in the past to teach
people to program.” (I1)

A major challenge facing programming educators is deciding
‘what to teach’ in programming courses, as what will be required for
aprogramming job is very likely to change in the future. While most
interviewees felt it was important that programming profession-
als had knowledge and practical understanding of the foundations
of programming, and that this should be taught in programming
courses, some interviewees questioned whether all computing stu-
dents would need low-level programming skills in the future. An
important consideration was how the computing industry will use
Al tools.

I'think we need different kinds of professionals with different
understandings of computing. Some need to be very deeply
involved with how our programming languages work ...
others might only need some kind of overall understanding.
They are not programmers by themselves, but they still
should understand how software is produced. (112)

There was general agreement that it is important to teach stu-
dents how to interact effectively with Al tools.

...if we don’t teach the students to use [Al tools] and inte-
grate them, the students will use them ... 'm quite certain
that workplaces would, in the future, require the students
to use such tools ... So, if we didn’t teach them, there would
probably be some kind of backlash. (19)

A key question is when Al tools should be introduced into com-
puting programs. One interviewee proposed that Al tools should
be introduced as early as possible. However, most were concerned
that using Al tools in introductory programming courses would
interfere with learning the basics of programming. One interviewee
expressed a fear that we might move “toward programming to be

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

more about writing prompts or how to prompt this black box to do
something, which is very hard to teach” (110).

There was general agreement that the right time to introduce
Al tools is once students are proficient with programming. At this
stage they could use the tools in projects in a similar way to how
they would use them in their future work. The emphasis in teaching
would necessarily shift from code writing toward integration of
code, code evaluation and testing. One interviewee saw this as
part of the continual evolution of programming education with a
shift from low-level programming languages to higher levels of
abstraction.

Another major challenge was ‘how to teach and assess’. There
was a general concern that most or all tasks used in CS1 can be
readily solved by the AI tools. The risk is that student use of the
Al tools could have a negative impact on their learning and could
violate academic integrity rules if used for assessment. To avoid
situations where students engage in such unproductive behavior, it
was proposed that the tasks could be changed to those where the Al
tools were not useful; however, with the rapid advances in Al tools,
this was seen as difficult to achieve. Tasks used for assessment are
particularly problematic.

...assuming people say that it’s unnatural to code without
the tools. Then we need to supervise what kind of things
they did in there, whether did they actually understand
the code they produced. It changes the learning goals, it
changes the learning tasks. It will also possibly change the
assessment ... it will change the kind of supervision of the
students when they are doing learning. (19)

Most interviewees envisaged that changes will be needed to
course learning outcomes as the current learning outcomes do not
reflect the learning that the students would be gaining through the
use of the tool.

...assuming that there remains a need to teach people to
program, we’re going to have to come up with completely
different ways of doing it. And with completely different
arguments, to persuade students of the value of them, ac-
tually learning it rather than them finding a tool to do it.
That’s an exciting time to be a computing educator. (I1)

5 DISCUSSION

The whole academic world, including computing faculty members,
has been surprised by the power of the new and emerging LLM-
based Al tools. The initial focus of discussion among computing
departments has been concerns about academic integrity among
students, as well as the trivializing of many of the assignments in
our introductory courses, which is reflected both in our interviews
and in prior studies [19, 39]. However, many teachers also envisage
new opportunities to improve education with these tools, provid-
ing support for both students and teachers, and this view is also
receiving much attention in the current LLM-related research in
CER. Overall, we are still at an adaptation phase, and, perhaps be-
cause of this, the future of education seems unclear. There are calls
to reconsider learning goals at course and curriculum level, and
teachers are looking for novel teaching methods and assessment
practices that would accommodate the change. Many have some
experience in using the tools based on personal exploration, but



SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

there are still no established best practices or research-based peda-
gogies highlighting when and how the tools should be integrated
with different courses.

A curriculum-level perspective poses a fundamental question:
who will need programming skills in the future? So far, service
courses in programming for non-CS degree programs have often
been motivated by gaining a sufficient understanding of program-
ming concepts and process to facilitate collaboration with profes-
sional software developers, as well as learning practical skills to
write small programs to manipulate their own data. Now, we may
be in a phase where such skills are replaced by learning to use Al
tools to carry out the necessary programming, in the same way
that we use statistical software to perform tests without consider-
ing how the calculations are actually carried out. Perhaps only a
small number of students need to learn ‘real programming skills’,
implying that computer science would transition from common
academic knowledge to an area of deep expertise.

On a course level, many of our interviewees emphasized that
assessment should focus more on the process of programming than
on the final submitted work, which is what is currently evaluated
either manually or automatically in exercises, projects, and ex-
ams. It is clear that while formally much of current programming
education states that we teach reading, writing, tracing, testing,
and debugging programs, most assessment methods focus on the
submitted work and its correctness and quality. Naturally, these
remain important aspects of assessment and should not be aban-
doned. The challenge has been that much of students’ work during
programming is invisible to teachers, and while we can get some
snapshots of what is happening in classroom sessions, we see very
little of what is happening when students are working on their
own. Some work has looked into using fine-grained programming
process logs gathered from instrumented IDEs to uncover student
work patterns [21-23, 26, 40] and to visualize student programming
processes [10, 14, 35, 38]. However, little has been done to explore
how AI tools could support the analysis of such extremely rich data
to identify situations where students get stuck, tinker with their
program, or have clear misconceptions. Al has the potential, based
on large sets of log data, to build constructive personal feedback
which could be integrated into IDEs. At a simpler level, Al has
already been used, for example, to improve error messages [25].

Considering code reading skills, Al tools could be used to gen-
erate code examples [6] and code explanations [32]. These could
be used as ready-made materials for code review sessions for stu-
dents, but could also inspire new types of assignment that are
automatically generated and possibly automatically assessed using,
for example, the ‘questions about learner’s code’ technique [20].
It is easy to imagine Al-driven applications that would generate
deliberately buggy code and guide students to find and fix errors,
recording their actions and providing personal feedback to support
their process.

From the teachers’ perspective, Al tools can be used to generate
not only examples but complete programming assignments with
model solutions and test cases [32], thus reducing their work and
supporting the production of personalized exercises for students.
The tools could summarize students’ code and documents for initial
screening, and suggest comments on them which the teacher could

Judy Sheard et al.

accept, reject or modify, thus speeding up the giving of formative
feedback.

6 LIMITATIONS

Our study comes with a set of limitations which we outline here.
Related to the generalizability of our findings, one limitation is that
we interviewed only 12 academics from six different universities. It
is possible that the thoughts expressed by these academics do not
accurately represent those of the larger population of computing
educators. However, even with this number of interviewees, we
started seeing similar thoughts being expressed, which could signal
that some level of saturation was reached.

Additionally, large language models are advancing very fast, and
results published now can be dated in a few months. As an example,
a speaker at the ITiCSE 2023 conference started his presentation
by apologizing that the results in the paper were unfortunately not
longer valid, as a new version of GPT was clearly more powerful
than the one used in the paper, making the results dated at best.
Similarly, it is likely that the views expressed by the instructors
in our study reflect their thoughts on Al with the capabilities that
were available at the time of the interviews (early 2023), and their
thoughts might differ now that the capabilities have already grown.

7 CONCLUSION

We interviewed 12 teachers from six different institutions in three
countries concerning their perspectives on teaching programming
in introductory and advanced courses. The interviews revealed
concerns about threats to academic integrity and challenges for the
learning of novice students if they use the tools to generate submis-
sions and not to learn programming. We acknowledge that similar
concerns are shared by most of our colleagues internationally; how-
ever, our interview data is rich in discussion of new opportunities
and how programming education could or should be revised to
mitigate some of the challenges but also to accept that world is now
different and we must learn to live in it.

These goals provide fruitful work for computing education re-
searchers, not only in designing and implementing such Al tools
but in investigating their impact on students’ learning, conceptions,
and studying process, as well as the impact on the work of edu-
cators. A rich research field is opening for us, along with a vast
demand for working solutions and tools, not only in universities
but also in school level programming education. Many questions
concern how we should teach the appropriate use of these tools at
different levels. When is it appropriate? What basic knowledge is
needed for using them successfully? How should they be integrated
into the curriculum? What skills and knowledge are needed for
different target groups? This is a rich field for future work.

ACKNOWLEDGMENTS

We would like to thank the academics who generously gave their
time to be interviewed for this study. We are grateful for the grant
from the Ulla Tuominen Foundation to Juho Leinonen.

REFERENCES

[1] Ibrahim Albluwi. 2019. Plagiarism in programming assessments: a systematic
review. ACM Trans. Comput. Educ. 20, 1, Article 6 (Dec 2019), 28 pages. https:
//doi.org/10.1145/3371156


https://doi.org/10.1145/3371156
https://doi.org/10.1145/3371156

Instructor Perceptions of Al Code Generation Tools — A Multi-Institutional Interview Study

[2] Sara Amani, Lance White, Trini Balart, Laksha Arora, Dr. Kristi J. Shryock,

[10

[11

[12

(13

[14

[15

[16

(17

(18

[19

[20

]

]

]

]

]

[21]

Dr. Kelly Brumbelow, and Dr. Karan L. Watson. 2023. Generative Al perceptions:
a survey to measure the perceptions of faculty, staff, and students on generative
Al tools in academia. arXiv:2304.14415 [cs.HC]

Carlo Bellettini, Michael Lodi, Violetta Lonati, Mattia Monga, and Anna Morpurgo.
2023. DaVinci goes to Bebras: a study on the problem solving ability of GPT-3.
In 15th International Conference on Computer Supported Education. 2: CSEDU.
SciTePress, 59-69.

Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (2006), 77-101.

Cecilia Ka Yuk Chan and Katherine K. W. Lee. 2023. The Al generation gap:
are gen Z students more interested in adopting generative Al such as ChatGPT
in teaching and learning than their gen X and millennial generation teachers?
arXiv:2305.02878 [cs.CY]

Paul Denny, Hassan Khosravi, Arto Hellas, Juho Leinonen, and Sami Sarsa. 2023.
Can We Trust Al-Generated Educational Content? Comparative Analysis of
Human and Al-Generated Learning Resources. arXiv:2306.10509 [cs.HC]

Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
exploring prompt engineering for solving CS1 problems using natural language.
In 54th ACM Technical Symposium on Computer Science Education V.1. 1136-1142.
Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2023. Promptly: using
prompt problems to teach learners how to effectively utilize Al code generators.
arXiv:2307.16364 [cs.HC]

Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio San-
tos, and Sami Sarsa. 2023. Computing education in the era of generative AL
arXiv:2306.02608 [cs.CY]

Joseph Ditton, Hillary Swanson, and John Edwards. 2021. External imagery in
computer programming. In 52nd ACM Technical Symposium on Computer Science
Education. 1226-1231.

James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: exploring the implications of openai
codex on introductory programming. In 24th Australasian Computing Education
Conference. 10-19.

James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A Becker. 2023. My Al wants to know if this will be
on the exam: testing OpenAI’s Codex on CS2 programming exercises. In 25th
Australasian Computing Education Conference. 97-104.

Simon Gray, Caroline St. Clair, Richard James, and Jerry Mead. 2007. Suggestions
for graduated exposure to programming concepts using fading worked examples.
In Third International Workshop on Computing Education Research (ICER "07).
99-110. https://doi.org/10.1145/1288580.1288594

Kenny Heinonen, Kasper Hirvikoski, Matti Luukkainen, and Arto Vihavainen.
2014. Using codebrowser to seek differences between novice programmers. In
45th ACM Technical Symposium on Computer Science Education. 229-234.

Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpai, and
Juha Sorva. 2023. Exploring the responses of large language models to beginner
programmers’ help requests. arXiv preprint arXiv:2306.05715 (2023).

Jaeho Jeon and Seongyong Lee. 2023. Large language models in education: a
focus on the complementary relationship between human teachers and ChatGPT.
Education and Information Technologies (2023), 1-20.

Enkelejda Kasneci, Kathrin Sefiler, Stefan Kiichemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke
Hillermeier, et al. 2023. ChatGPT for good? On opportunities and challenges
of large language models for education. Learning and Individual Differences 103
(2023), 102274.

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara ] Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of Al code generators on
supporting novice learners in introductory programming. In 2023 CHI Conference
on Human Factors in Computing Systems. 1-23.

Sam Lau and Philip ] Guo. 2023. From “ban it till we wnderstand it” to “resistance is
futile”: how university programming instructors plan to adapt as more students
use Al code generation and explanation tools such as ChatGPT and GitHub
Copilot. In ICER 2023.

Teemu Lehtinen, Lassi Haaranen, and Juho Leinonen. 2023. Automated question-
naires about students’ JavaScript programs: towards gauging novice program-
ming processes. In 25th Australasian Computing Education Conference. 49-58.
Juho Leinonen. 2019. Keystroke Data in Programming Courses. Ph. D. Dissertation.
University of Helsinki.

Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2021. Does
the early bird catch the worm? Earliness of students’ work and its relationship
with course outcomes. In 26th ACM Conference on Innovation and Technology in

[23]

[24]

[25]

[26]

[27

[28

[20

[30

(31

(32]

[33

[35

[36

w
=

[38

[39

[40

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Computer Science Education V.1. 373-379.
Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2022. Time-
on-task metrics for predicting performance. In 53rd ACM Technical Symposium

on Computer Science Education-Volume 1. 871-877.
Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne

Kim, Andrew Tran, and Arto Hellas. 2023. Comparing code explanations created
by students and large language models. In 28th Conference on Innovation and
Technology in Computer Science Education V.1 (ITiCSE 2023). 124-130. https:
//doi.org/10.1145/3587102.3588785

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using large language models to enhance programming
error messages. In 54th ACM Technical Symposium on Computer Science Education
V. 1. 563-569.

Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Automatic
inference of programming performance and experience from typing patterns. In
47th ACM Technical Symposium on Computing Science Education. 132-137.
Mark Liffiton, Brad Sheese, Jaromir Savelka, and Paul Denny. 2023. CodeHelp:
using large language models with guardrails for scalable support in programming
classes. arXiv:2308.06921 [cs.CY]

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in a web software development
e-book. In 54th ACM Technical Symposium on Computer Science Education V.1.
931-937.

Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,
Adish Singla, and Gustavo Soares. 2023. Generating high-precision feedback
for programming syntax errors using large language models. arXiv preprint
arXiv:2302.04662 (2023).

James Prather, Paul Denny, Juho Leinonen, Brett A Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots are Here: Navigating the Generative Al
Revolution in Computing Education. arXiv preprint arXiv:2310.00658 (2023).
James Prather, Brent N Reeves, Paul Denny, Brett A Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. "It’s weird that it knows what I want": usability and interactions
with Copilot for novice programmers. arXiv preprint arXiv:2304.02491 (2023).
Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In 2022 ACM Conference on International Computing Education Research-
Volume 1. 27-43.

Judy Sheard and Martin Dick. 2011. Computing student practices of cheating and
plagiarism: a decade of change. In 16th Conference on Innovation and Technology
in Computer Science Education (ITiCSE °11). 233-237. https://doi.org/10.1145/
1999747.1999813

Judy Sheard, Simon, Matthew Butler, Katrina Falkner, Michael Morgan, and
Amali Weerasinghe. 2017. Strategies for maintaining academic integrity in first-
year computing courses. In 2017 ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE °17). 244-249. https://doi.org/10.1145/
3059009.3059064

Raj Shrestha, Juho Leinonen, Arto Hellas, Petri Thantola, and John Edwards. 2022.
Codeprocess charts: visualizing the process of writing code. In 24th Australasian
Computing Education Conference. 46-55.

Simon, Judy Sheard, Michael Morgan, Andrew Petersen, Amber Settle, Jane
Sinclair, Gerry Cross, and Charles Riedesel. 2016. Negotiating the Maze of
Academic Integrity in Computing Education. In Proceedings of the 2016 ITiCSE
Working Group Reports (Arequipa, Peru) (ITiCSE ’16). Association for Computing
Machinery, New York, NY, USA, 57-80. https://doi.org/10.1145/3024906.3024910
Michel Wermelinger. 2023. Using GitHub Copilot to solve simple programming
problems. In 54th ACM Technical Symposium on Computer Science Education V.1.
172-178.

Benjamin Xie, Jared Ordona Lim, Paul K.D. Pham, Min Li, and Amy J. Ko. 2023.
Developing novice programmers’ self-regulation skills with code replays. In 2023
ACM Conference on International Computing Education Research V.1 (ICER 2023).
https://doi.org/10.1145/3568813.3600127 second and third authors made equal
contributions.

Cynthia Zastudil, Magdalena Rogalska, Christine Kapp, Jennifer Vaughn, and
Stephen MacNeil. 2023. Generative Al in computing education: perspectives of
students and instructors. arXiv:2308.04309 [cs.HC]

Albina Zavgorodniaia, Raj Shrestha, Juho Leinonen, Arto Hellas, and John Ed-
wards. 2021. Morning or evening? An examination of circadian rhythms of
CS1 students. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET).


https://arxiv.org/abs/2304.14415
https://arxiv.org/abs/2305.02878
https://arxiv.org/abs/2306.10509
https://arxiv.org/abs/2307.16364
https://arxiv.org/abs/2306.02608
https://doi.org/10.1145/1288580.1288594
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3587102.3588785
https://arxiv.org/abs/2308.06921
https://doi.org/10.1145/1999747.1999813
https://doi.org/10.1145/1999747.1999813
https://doi.org/10.1145/3059009.3059064
https://doi.org/10.1145/3059009.3059064
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.1145/3568813.3600127
https://arxiv.org/abs/2308.04309

	Abstract
	1 Introduction
	2 Related Work
	2.1 Large Language Models in Computing Education Research
	2.2 Student and Instructor Perspectives of Large Language Models

	3 Methodology
	3.1 Research Questions
	3.2 Approach
	3.3 Participant Recruitment and Characteristics
	3.4 Data Collection
	3.5 Analysis
	3.6 Ethical Considerations

	4 Results
	4.1 RQ1: Threats and Opportunities for Learning Programming
	4.2 RQ2: Threats and Opportunities for Teaching and Assessment
	4.3 RQ3: How Programming Education Should Change

	5 Discussion
	6 Limitations
	7 Conclusion
	Acknowledgments
	References

