
CodeProcess Charts: Visualizing the Process of Writing Code
Raj Shrestha

Utah State University
Logan, Utah, USA

raj.shrestha86@outlook.com

Juho Leinonen
University of Helsinki

Helsinki, Finland
juho.leinonen@helsinki.fi

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

Petri Ihantola
University of Helsinki

Helsinki, Finland
petri.ihantola@helsinki.fi

John Edwards
Utah State University
Logan, Utah, USA

john.edwards@usu.edu

ABSTRACT
Instructors of computer programming courses evaluate student
progress on code submissions, exams, and other activities. The eval-
uation of code submissions is typically a summative assessment
that gives very little insight into the process the student used when
designing and writing the code. Thus, a tool that offers instruc-
tors a view into how students actually write their code could have
broad impacts on assessment, intervention, instructional design,
and plagiarism detection. In this article we propose an interactive
software tool with a novel visualization that includes both static
and dynamic views of the process that students take to complete
computer programming assignments. We report results of an ex-
ploratory think-aloud study in which instructors offer thoughts
as to the utility and potential of the tool. In the think-aloud study,
we observed that the instructors easily identified multiple coding
strategies (or the lack of thereof), were able to recognize plagia-
rism, and noticed a clear need for wider dissemination of tools for
visualizing the programming process.

CCS CONCEPTS
•Human-centered computing→ Visualization systems and tools;
• Social and professional topics→ Computing education.

KEYWORDS
process data, visualization, software visualization, tool, visualiza-
tion tool, source code analysis, source code snapshots, learning
analytics, educational data mining

ACM Reference Format:
Raj Shrestha, Juho Leinonen, Arto Hellas, Petri Ihantola, and John Ed-
wards. 2022. CodeProcess Charts: Visualizing the Process of Writing Code.
In Australasian Computing Education Conference (ACE ’22), February 14–
18, 2022, Virtual Event, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3511861.3511867

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACE ’22, February 14–18, 2022, Virtual Event, Australia
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9643-1/22/02. . . $15.00
https://doi.org/10.1145/3511861.3511867

1 INTRODUCTION
One primary aim of introductory programming courses is to teach
students how to develop computer programs. However, if a student
cannot attend classes, or if the instructor does not write code in the
classes, or if other means to see how programs are constructed are
not offered, students do not have the opportunity to observe the
process of writing code [38]. Similarly, instructors (and automated
assessment systems) are often blind to the students’ process of
writing code, as they often use submissions of final code to assess
students’ abilities in writing code [17, 34]. The problem is that the
final code gives no hint as to the process that a student took to write
it. Two students, one of whom sailed through development of the
code, and another who may have struggled, may submit code that
looks very similar. This is especially true in introductory computer
programming courses, where the programming assignments can
be relatively simple.

One research stream with the potential to alleviate this issue is
the collection and use of intermediate snapshot data from students’
computers as they write programs [19], one example of which is
keystroke data [23]. It has been suggested that keystroke-level data
may provide significantly more information on, e.g., what sorts of
programs students try out and what sorts of syntax errors students
encounter when compared to submission data or snapshots taken,
e.g., when running or testing the program [44]. Most previous work
on such data has focused on analyzing compilations and predicting
course outcomes [1, 4, 7, 8, 20, 24, 26, 46], understanding typing
behaviors [11, 12, 25, 27, 33, 48], studying how novices construct
programs [43], improving programming skill through code play-
back [10], etc. However, only little emphasis has been invested
into building and using (interactive) visualizations of how students
write programs.

While prior work on visualizations of code changes has mostly
focused on bigger programming projects with relatively coarse
change granularity [29, 32], such work is less common in studying
fine-grained changes, especially within the domain of seeking to
understand how novices write code. Thus, in this study, we use sim-
ilar ideas to those used in visualizing large software projects [45].
Moreover, we present an interactive visualization tool called Code-
Process1 that allows the user to peer into how a computer program
is developed. While the tool includes standard playback and file

1The CodeProcess code is publicly available at two repositories: github.com/
EdwardsLabUSU/CodeProcess-API is pre-processing Python code and github.com/
EdwardsLabUSU/CodeProcess-UI is JavaScript UI code.

https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0003-1197-7266
https://orcid.org/0000-0002-0882-312X
https://doi.org/10.1145/3511861.3511867
https://doi.org/10.1145/3511861.3511867
github.com/EdwardsLabUSU/CodeProcess-API
github.com/EdwardsLabUSU/CodeProcess-API
github.com/EdwardsLabUSU/CodeProcess-UI
github.com/EdwardsLabUSU/CodeProcess-UI

differencing functionality seen in some other programming pro-
cess visualization tools (c.f. [13, 28]), the primary value of the tool
comes from a static chart that provides a summary of how a file
was written at a glance. This chart is the centerpiece of the interac-
tive visualization and shows the user which parts of the file were
written when, as well as features like re-writing the same code,
trouble spots, pastes, and refactoring. We evaluated CodeProcess
using a qualitative, exploratory think-aloud study with external
instructors, where we studied how instructors use the CodeProcess
chart and what sorts of insights they come up with from viewing the
visualizations.

This article is organized as follows. We first discuss related work,
outlining previously proposed tools for analyzing the programming
process. In Section 3, we present the CodeProcess tool. Section 4
presents the think-aloud study, and Section 5 gives conclusions.

2 RELATEDWORK
Software visualizations are used in both educational and profes-
sional context. Based on Diehl, visualizations can focus either on
the structure, behaviour, or evolution of software [9]. In this study
we talk about evolution of students’ code. Evolutional visualiza-
tions are used for many purposes, including (professional) project
management and understanding developers [29]. As objectives in
education and professional software development are at least par-
tially overlapping, we will provide examples from both.

The basis for visualizating the programming process is the pos-
sibility to collect data from students who are programming, be it
programming assignment submissions data or more fine-grained
data such as keystroke data [19]. The last decades have witnessed
a noticeable increase in collection and use of snapshot data from
introductory programming classrooms [6, 16, 19, 21, 22, 39].

2.1 Code and snapshot playback
Programming process visualization and analysis tools at times come
with code and snapshot playback functionality, which allows a view
to how the software was developed. As an example, the Student
Coding and Observation Recording Engine (SCORE) [47] provides
a view that shows a diff-style navigation of code changes in a times-
tamped order over the files in an edited project. The Programming
Process Visualizer (PPV) [28] also provides a source code view that
allows replaying how the code under analysis was written.

While the previous two examples are desktop applications, brows-
er-based analysis tools also exist. For example, CodeBrowser [13]
provides source code snapshot playback and navigation function-
ality with the possibility of using a dual-view that highlights dif-
ferences in each subsequent snapshot. CodeBrowser also provides
functionality for tagging the displayed data for future analysis, and
uses an API for retrieving the visualized data which in principle
allows changing the server from where the shown data is retrieved
from. Similar recording playback functionality is also provided in
CSQuiz [42] which is an online programming environment that
supports recording and replaying programming sessions.

In general, code and snapshot playback tools allow detailed anal-
ysis of the recorded programming processes. For example, Toll [41]
observed that only approximately 15% of novice programmers time

is spent writing code, while 40% of the time is spent reading and nav-
igating code, and, when comparing the behavior of high-performing
and poorly performing students, Heinonen et al. [13] observed that
poorly performing students rarely had a systematic approach to
solving the programming problems. Such analyses can be time-
consuming for the researcher, however.

2.2 Structure of the code and state space
At a higher abstraction level, visualizations can use Abstract Syn-
tax Trees (ASTs), e.g., by highlighting how (nested) AST blocks
travel during the evolution of a software [40], or in general by
highlighting how the structure of the code changes over time. As
a concrete example of the latter, Helminen et al. [15] and Piech et
al. [35] have both demonstrated how state transition graphs illus-
trating the transitions between intermediate stages of solutions can
provide an overview to the different solution strategies in a single
programming task. The examples are in the context of visual block
based programming languages where the the number of different
block structures (i.e., states) is quite limited.

In the context of traditional programming languages, Piech et
al. [36] have also used code snapshots at each compile andmeasured
distance between snapshots using three metrics: bag of words, API
calls, and AST change, though in the end, API calls were heavily
influential and AST changes were only somewhat influential. The
end product was an HMM-derived flow chart of how different
groups of students developed their code, which was then used as
an effective predictor of exam score.

2.3 Code measures over time
Some of the tools plot various aggregate statistics over time. For
example, SCORE [47], PPV [28], Retina [30], and ClockIt [31] each
provide an overview of the programming process using either ag-
gregate statistics (or pixel-based visualizations discussed in the next
section). These aggregate statistics include, for example, details on
the number and type of compilation errors, the time that the stu-
dent has spent on the project, the size of the project over time, and
information on testing and running the projects. Some of the tools
such as Retina also provide the possibility for students to gain an
insight of the processes of other students, as well as hints on the
errors to look out for and estimates on how long the project will
take to complete. The same approach can be used in a professional
context to foster awareness in software teams [5]. Many of these
metrics used in education (e.g., code complexity [18]) are adopted
from the generic software quality research.

There are tools that also focus specifically on building an overview
of a project, as well as tools that work on already-generated ag-
gregate statistics. For example, SnapViz [3] takes in tab-delimited
data to build visualizations from students’ programming process;
similarly, ArAl [2] takes in a file that contains the number of source
code snapshots for each student when working on a particular as-
signment as well as a file with course outcomes, and then creates a
set of aggregate variables from the data that could be of interest to
teachers and researchers. These tools, on the other hand, often have
the problem that there is either no way to move from the aggregate
statistics to the source code, or moving from the aggregate statistics
to the source code can be cumbersome.

Plots of aggregate statistics and and other characteristics of a
project over time are often used together with playback or diff
view tools. Programming Process Visualizer (PPV) [28], mentioned
earlier, is a good example of that. Interesting changes in time-plots
can be clicked to see the corresponding section in the playback
view.

2.4 Combining location and time in pixel maps
Plotting code quality measures over time may help in identifying
when something interesting has happened in the code. To this end,
CVSscan [45] visualizations utilize pixel-map representation where
one dimension is time and the other is location in the code: the
horizontal axis is time in terms of commits and the vertical axis
is the line number of the file. Colors of pixels illustrate the age of
the last change (at the given time and location), red indicating that
the line was changed at that time point. The approach makes it
relatively easy to identify interesting areas (as horizontal stripes)
and the map is also used to navigate in the linked code view.

As our proposed CodeProcess charts and CVSscan use similar
ideas, we here discuss the differences and motivations behind the
differences. CVSscan is designed for the use of the maintenance
community: “the main activities a maintainer performs are related
to context recovery” [45]. Accordingly, CVSscan processes change
at a lower resolution in time and space than our CodeProcess charts.
The time resolution for CVSscan is every commit to a CVS code
repository, whereas CodeProcess charts compute changes at every
keystroke. Showing changes at each commit is sufficient for the
needs of software maintainers, who are looking for general context
of changes in large software projects with many contributors and
commits. Our purpose, however, is to visualize and understand how
a single developer writes code, for which commit-level resolution
is not sufficient. Regarding spatial resolution, CVSscan uses each
pixel to represent a line, whereas we use pixels in CodeProcess
charts to represent a single character. Again, this relates to the
goals of the visualizations: line-level resolution is sufficient for a
software maintainer to intuit the context in which a change is made,
but character-level changes are required to understand a student’s
cognitive processes.

The interpretations and linked tools between CVSscan and Code-
Process also differ. For example, CVSscan has no playback option,
while the playback option that is linked to the CodeProcess chart
is helpful not only in interpreting the chart (Sec. 4.5) but also in
interpreting the actions of the student (Sec. 4.3). Another motiva-
tional difference is why users would zoom in to a portion of the
chart. In the case of CVSscan, the maintainer is interested in the
function of the final code surrounding a change, whereas users
of CodeProcess charts already understand the function of the final
code (they designed the assignment, after all) – they want to un-
derstand why the student made that particular change at that time.
Finally, CodeProcess charts could potentially be used for student
feedback, for which a keystroke-resolution chart and playback are
fundamental features.

3 CODEPROCESS CHART AND SOFTWARE
CodeProcess is a software visualization tool that is designed to give
the viewer an immediate assessment of the general characteristics

of the process used to develop a piece of software. It features inter-
active controls for the user to analyze details of the process. It is a
web application developed using Python, D3 and React JS.

Given keystroke logs, we first preprocess them into a file that
indexes the data. Any keystroke log can be converted to our for-
mat provided it has the inserted/deleted code, information about
where in the code the change occured (either a single index into
linearized code or row/column pair), and a timestamp. The in-
dexed data files are loaded in the browser-based CodeProcess soft-
ware. The software can be viewed and experimented with at code-
analysis-e1a5d.web.app. A short demonstration video is available
at youtu.be/ptawbgpi0HI. There are three main windows in the
software tool: the CodeProcess chart, the code playback window,
and the final code window. See Figure 1.

3.1 CodeProcess chart
The CodeProcess chart is the centerpiece of the software tool. See
Figure 2. The CodeProcess chart is a 2D grid with keystroke event
indices on the y axis and character index of the final submission
on the x axis. The x axis indexes into a linearization of the final
code. A grid cell at (𝑥,𝑦) is colored in if the character at index 𝑥 is
represented in the snapshot at keystroke event 𝑦. The last row of
the chart, after the final keystroke event, will have every cell filled
in because, by definition, it matches the final version of the code.
For example, see the solid green line in Figure 3a. This line is at
event (i.e. keystroke) 1340 and the part of the text of the snapshot
after that event is in the box outlined in solid green. Following
the solid green line are a series of events, or rows in the chart,
where the student types “go to next circle posi”. You can see how
the number of characters that match the final version of the code
increase as we go down in the chart. The dashed blue line is in the
middle of the student’s typing. Then, at event 1372, at the tip of
the triangle, the student decided to delete the text and retype it
after adding “set and”. Finally, at the dotted red line the student has
completed the correction and the section of code matches what is
in the final version. The triangle feature in the CodeProcess chart is
an indication that the student typed correct code then deleted it.

In Figure 3b we see details of submission 4. This student started
out by linearly typing in straightforward variable calculations (solid
green box) followed by a series of append operations to the string
variable msg (dashed blue boxes). The student then went back and
modified many of the append statements (dotted red boxes). Sub-
mission 5 (Figure 2b) has a similar structure – in that submission,
the student wrote a series of statements and then went back and
interspersed comments between them. The chart features evenly
spaced “pillars” which is an indication that students wrote a number
of lines of code and then went back and wrote code between them.
In our data this is most often the case when students either write
comments then write code under each comment (thin pillars) or
when they comment the code at the end (thick pillars). It does not
occur when the student comments as they go. Of course, as we
saw in submission 4, pillars will appear if students do some other
periodic modification to multiple lines of code.

Figure 4 shows a zoomed in version of submission 11. The
zoomed out version of submission 11 (Figure 2d) looks like a solid

code-analysis-e1a5d.web.app
code-analysis-e1a5d.web.app
youtu.be/ptawbgpi0HI

Figure 1: CodeProcess software. The CodeProcess chart is on the left. The playback window is on the top right and the final code
window is on the bottom right.

block, indicating a large paste. Indeed, this is the case, which indi-
cates a plagiarized submission. If we zoom in (Figure 4) we see thin
vertical white lines. These lines indicate places where the student
modified variable names and comments to mask the plagiarism.

Figure 5a shows an example of a student copying a solution
by typing it in. In this case the student may believe that typing
the solution instead of copy-pasting it will make the plagiarism
less obvious, but the triangular shape of the chart makes it fairly
clear what is happening. The chart in Figure 5b is similar but isn’t
completely linear. In this case the student is a capable programmer
writing a merge sort. They typed the test cases and structural code
first, accounting for the first block code written linearly, and then
wrote the recursive function.

From the CodeProcess chart the user can understand when the
particular section of the code was written, whether student used a
top-down or bottom-up approach to formulate solution, whether
they started with comments, differences between novice and expert
programming patterns, and identify plagiarized solutions. The plot
is also interactive and supports zoom, pan, and brush selection
features.

3.2 Code playback
The playback window (Figure 1) can be used to play back the key-
stroke events of a student to see how the student formulated their
solution. The slider allows the user to see the snapshot at a partic-
ular keystroke event (at the horizontal line shown in the chart in
Figure 1). The snapshot of the code can then be compared to the
final code using a highlight diff feature that highlights the code

present in final code. The playback also has a pause/play feature
and speed control buttons.

3.3 Final code
The final code window (Fig 1) displays the submitted solution of a
student. If we highlight a particular section on the of theCodeProcess
chart, it will highlight that section on the final code. The user can
compare the final code with the snapshot and see the differences
using the highlight feature.

4 THINK-ALOUD STUDY
In this section, we provide the results of exploratory think-aloud
sessions with two instructors. We discuss the different use cases of
the tool along with instructors’ thoughts and their experience with
the tool.

4.1 Context and data
We collected keystrokes in a CS1 course during Spring semester,
2021. The course was taught online (because of COVID-19) at a
mid-sized public university in the United States. At the beginning
of the semester students were given the opportunity to opt into
the study according to the university’s IRB protocol #11554, and
this paper uses data only from students who opted in. The course
was identical for students who chose to participate in the study
and those who chose not to. 15 students volunteered for the study.
Students were required to install a plugin to the PyCharm IDE and

(a) Submission 4 (b) Submission 5

(c) Submission 8 (d) Submission 11

Figure 2: Visualization of submissions 4, 5, 8, and 11. All but submission 5 were used in the pilot study.

acknowledge that their keystrokes would be recorded. The plu-
gin recorded keystrokes while students wrote their programming
assignments. A total of 81 submissions were collected.

4.2 Study details
CS1 instructors from two different public universities in the United
States were recruited to participate according to IRB #12110. We
will use the pseudonyms Joseph and Peter. Being an exploratory,
qualitative study, we did not gather quantitative data, but rather,
sought to understand different approaches in how instructors might
use and value the tool. The two instructors were asked to partic-
ipate in a single, one-hour think-aloud session over Zoom that
was recorded. At the beginning of each think-aloud session, the
researcher gave a brief description of the CodeProcess visualization
software and the participant watched a two-minute video tutorial
on the usage and features of CodeProcess. The video tutorial did not
give any guidance on interpretation of the different features of the
CodeProcess chart. The instructors then interacted with data from

three submissions: 4, 8, and 11 (see Figure 2). From approximately
15 candidate student submissions we chose these three submissions
because they appear to represent four important behaviors in pro-
gramming: linear code development (submission 4), returning to
make changes to code developed linearly (submission 4), non-linear
code development (submission 8), and plagiarism (submission 11).
In submission 4 the student was asked to compute net pay given
gross pay, tax rate, etc. The student wrote boilerplate code linearly,
then wrote a series of string appends, followed by going back and
modifying many of the string appends. In submission 8 the student
wrote a fluky number program. The student bounced back and forth
in the code, writing different parts of the program in a seemingly
random way. Submission 11 was a text-based blackjack game. The
student pasted most of the assignment from elsewhere and then
modified variable names, strings, and comments to mask the pla-
giarism. Instructors were asked to think aloud as they interacted
with the tool and gained insights into students’ code development
process.

}
}

}
delete: "go to next circle
posi"

type: "go to next circle
posi"

type: "set and go to next
circle position"

(a)

(b)

Figure 3: (a) Zoomed in version of submission 5 (Figure 2b) at events 1307-1434 and including characters 705-770. (b) Details
on submission 4 (Figure 2a).

Figure 4: Zoomed in view of submission 11. See Fig. 2d.

The two instructors initially took different approaches to the tool.
Peter started right off with interpreting the CodeProcess chart and
using playback as an auxiliary tool. Joseph initially relied primarily
on the playback and paid little attention to the chart. This approach
was more intuitive, but it took him longer to gain insights into

student behavior because he had to watch the replay which, even
when replayed at high speed, takes longer than just glancing at
the chart. Eventually the researcher encouraged Joseph to spend
a little time on the chart and within a few minutes he was able to
link insights from the chart to the replay.

4.3 Student process
The visualization was useful for the instructors to understand the
student’s approach toward implementing a solution. The “pillars”
in the chart show what part of the final code was completed first.
Studying the patterns of these pillars can be useful to see if the
solution was developed using a top-down (submissions 4 and 5)
or bottom-up approach (submission 8), understand the student’s
thinking process, and identify common solution patterns. Instruc-
tors in our study were able to see if the student used linear (again,
submissions 4 and 5) or non-linear thinking (submission 8) in devel-
oping a solution. Instructors also found it useful in showing when

(a) (b)

Figure 5: (a) Example of a student typing in code from another solution. (b) Example of what might look like a student typing
code from another solution but what, in this case, is a capable student writing their code linearly.

the student edited a particular section of code. After looking at sub-
mission 4 (Figure 2a), Peter said, “It appears that, in general, code
was generated kind of top to bottom in a linear fashion. This is a
pretty straightforward assignment. It didn’t require much nonlinear
thinking”. Similarly, Joseph thought that the student in submission
4 had a reasonably clear understanding of what needed to be done.
The student was working in a linear way as if they had planned
out the solution on paper before attempting the solution.

Instructors also identified that different submissions showed
different approaches to getting the solution. For submission 4 (Fig-
ure 2a) both Peter and Joseph agreed that the student took the
approach of just making the code to work and later tidying up the
code in a linear way. But for submission 8 (Figure 2c), Peter and
Joseph had different insights. Peter thought that the student was
more deliberate in their approach:

Okay, so this looks like much less linear. Which is
interesting, because the nonlinear aspects of it showed
up first. Maybe you can tell that the student is thinking
about the solution before writing the code.

Joseph, however, thought the student didn’t plan well:

They’re jumping around. Like they get going, like,
“oh, yeah, I need to do this.” And they go back and
add that feature, like the loop counter...I feel like this
program probably took them twice as long to write
this way than if they would have thought it through
on paper first...they probably would have got it right
at the first try instead of this iterative [approach].

It is remarkable that the two instructors viewed the same student’s
approach with such a difference of opinion. We suggest that the
difference in opinion between the two instructors is an important re-
sult that raises a number of questions: Was submission 8 effectively
written or not? Are students most successful when they program
linearly or not? Why would two instructors have such strong dif-
ferences of opinion? We expect that instructors would have very
similar opinions of the quality of final code submissions, but the
differences of opinion regarding the process students took to write
the code implies that we, as a community, may need to seek better

understanding of what best practices for code development process
actually are. Until now we haven’t had readily available tools that
can effectively communicate how code evolves while a student
completes an assignment. CodeProcess fills this gap and allows the
research community to explore and potentially quantify exactly
how students write their code. This is especially important because
our anecdotal answers to these questions are often influenced by
our teaching methods. For example, Joseph, who was concerned
that the student in assignment 8 wrote code without a plan, teaches
his students to first make a plan:

The way I kind of teach my students...is, you know,
sketch it out on paper a few times...and then when
you translate it into code...it logically should make
sense. Maybe you got a few syntax errors, but the
overall structure is there for you.

Whether this is actually the best approach could be explored using
CodeProcess. Indeed, both instructors agreed that the tool can be
useful in distinguishing and characterizing their students based on
different patterns of programming skills.

4.4 Plagiarism detection
Detecting and proving plagiarism has always been a challenging
problem. Plagiarism detection methods like MOSS [37] flag submis-
sions for a potential plagiarism based on analysis of only the final
code snapshot. Due to this, prior work has suggested looking at
the process instead of only the final submission to identify plagia-
rism [14]. CodeProcess allows an instructor to see how a solution
was created over a time and plagiarism, when effected through past-
ing code or typing someone else’s code, is immediately detectable.
Understanding the context of plagiarism can also be helpful for in-
structors to identify the weak areas of students. Instructors can then
help students to strengthen these weak areas and reduce plagiarism
on future assignments. Submission 11 (Figure 2d) was plagiarized:
it can be seen from the CodeProcess chart that the student pasted a
large portion of code and then changed parts of the code to mask
the plagiarism.2 The instructors in our study (who were not the
2We were surprised that a student would consent to a study collecting their keystrokes
and then commit an egregious act of plagiarism. The student may have relied on the

instructors of the course) were able to identify the plagiarized so-
lution easily by looking at the visualization. This was especially
evident in Peter’s experience. Peter accidentally caught a glimpse
of the CodeProcess chart for submission 11 at the very beginning
of the think-aloud session – before he knew anything about the
interpretation of the chart. He then watched the training video
and explored submissions 4 and 8. In the middle of looking at sub-
mission 8 he remarked that the CodeProcess chart he had caught a
glimpse of at the beginning (submission 11) must have been a case
of plagiarism. Later, as he explored submission 11, he said,

Yeah it’s pretty obvious that this person copied this
code from somewhere. And it looks like they’re ba-
sically just changing variable names. Presumably to
make it look like it’s not copied. So I immediately
flagged this from suspicion to just outright cheating.

Two things are worth noting in this quote: first is that Peter recog-
nized that the student was changing variable names. The second is
his use of “immediately.” We envision a tool that shows the instruc-
tor a matrix of many CodeProcess charts at a time and hypothesize
that in seconds the instructor could pick out suspected cases of
cheating. A machine learning approach to detect cheating from the
chart would be even better. Joseph was also able to identify plagia-
rism on submission 11. He also discovered cosmetic changes made
by the student to mask the dishonesty. Both instructors agreed that
the visualization tool can be used to generate reports of students
after each assignment across the spectrum of CS classes to detect
plagiarism and dishonesty. Rule-based heuristics, e.g., software that
looks for large pastes, could be used to help detect plagiarism. Using
CodeProcess charts as a confirmatory tool could allow the heuristics
to have higher type I error rates.

4.5 Interpretability of the CodeProcess chart
In designing our study we were concerned that the CodeProcess
chart might be difficult to interpret, but the instructors in our study
had no trouble with interpretation, especially when given a play-
back and highlighting tools to explore with. Peter quickly caught on
and was able to identify features after only a few minutes. Joseph
was initially more interested in the playback tool, but after ex-
ploring the chart for a few minutes was also able to detect and
interpret features, including the “pillars” and plagiarism. By the
end of their sessions, each instructor made insightful suggestions
as to improving the tool: Peter suggested a matrix of charts for
quick identification of suspected plagiarism, and Joseph suggested
that we include run events to see if students were trying to brute-
force a solution. Both instructors agreed that the tool was easily
understandable and useful for CS classes.

4.6 Feedback to the student
Peter suggested that having students see a visualization and play-
back of their own code writing “would encourage them to think
more deeply about [their] problem solving approach.” Joseph said
that he would like to use the visualization in conferences with his
students, using it “as a tool I could sit down with and we could

statement in the informed consent document indicating that the instructor of the
course would not see their keystrokes or, more likely, they may have simply forgotten
that their keystrokes were being recorded.

go back to their recording...where we could watch how the work
actually went, that probably be more honest witness of their work
than what they recall from doing it.” Peter also thought that the
CodeProcess chart would be useful to students, as “the students can
also see what their main chart for the solution would look like” as
compared to the chart for an expert.

4.7 Other results
After a think-aloud session instructors gave us some suggestions
and use cases of the tool. Peter suggested that the tool can be useful
in other fields too. He thinks the tool can be useful in English
classes to detect plagiarism and to understand how students are
formulating their essays. Peter also suggested the use of machine
learning to flag students automatically and group novice and expert
programmers. He also thinks a report or a summary after each
submission can be useful for instructors to understand how their
students are performing in their course. Both instructors agreed
that automatically flagging suspected plagiarism would be useful.

5 CONCLUSIONS
In this work, we presented CodeProcess which is a novel tool for vi-
sualizing the programming process (example visualizations shown
in Figure 2). The tool utilizes keystroke data to show in which order
different parts of the source code were developed. In addition, we
conducted a pilot think-aloud study to evaluate whether computing
instructors can leverage the visualizations for pedagogical insights.

Our aim in developing the tool was to provide instructors with
easy-to-understand visualizations that tell something about the
process a student took to arrive at their solutions at a glance. We
hypothesized that instructors could use the tool – for example – to
augment assessment; to determine whether students are solving a
programming problem in a top-down or a bottom-up manner; that
the tool could be used to identify cases of plagiarism; and that the
visualization could also indicate whether a student is struggling. Ad-
ditionally, the tool could be used to visualize the programming pro-
cess to the student themselves for reflection, or show students their
peers’ processes to allow students to see other solution approaches
and problems other students might have had when programming.
These analyses could be enhanced through first identifying specific
cases – or stereotypical cases – from the data using, say, machine
learning methodologies.

The results of the think-aloud study suggest that instructors are
able to understand the visualizations and use the tool with little
training. Both instructors interviewed in the study could identify
plagiarism and recognized top-down versus bottom-up approaches
taken by different students. Interestingly, the instructors interpreted
one case differently. In the bottom-up process shown in Figure 2c,
one instructor considered that the student is planning their solu-
tion, while the other hypothesized that the student did not plan
well which resulted in “jumping around”. This highlights that the
tool could also be used to help instructors explore which solution
approaches result in the best outcomes. Lastly, we suggest that the
tool could also be used in the professional context for code reviews
and allow professional programmers to reflect on their process.

REFERENCES
[1] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015.

Exploring machine learning methods to automatically identify students in need
of assistance. In Proceedings of the eleventh annual international conference on
international computing education research. 121–130.

[2] Alireza Ahadi, Raymond Lister, and Luke Mathieson. 2019. ArAl: An Online Tool
for Source Code Snapshot Metadata Analysis. In Proceedings of the Twenty-First
Australasian Computing Education Conference. 118–125.

[3] Evan Balzuweit and Jaime Spacco. 2013. SnapViz: visualizing programming
assignment snapshots. In Proceedings of the 18th ACM conference on Innovation
and technology in computer science education. 350–350.

[4] Brett A Becker. 2016. A new metric to quantify repeated compiler errors for
novice programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. 296–301.

[5] Jacob T Biehl, Mary Czerwinski, Greg Smith, and George G Robertson. 2007.
FASTDash: a visual dashboard for fostering awareness in software teams. In
Proceedings of the SIGCHI conference on Human factors in computing systems.
1313–1322.

[6] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting.
2014. Blackbox: A large scale repository of novice programmers’ activity. In
Proceedings of the 45th ACM technical symposium on Computer science education.
223–228.

[7] Adam S Carter, Christopher D Hundhausen, and Olusola Adesope. 2015. The
normalized programming state model: Predicting student performance in com-
puting courses based on programming behavior. In Proceedings of the eleventh
annual International Conference on International Computing Education Research.
141–150.

[8] Karo Castro-Wunsch, Alireza Ahadi, and Andrew Petersen. 2017. Evaluating
neural networks as a method for identifying students in need of assistance. In
Proceedings of the 2017 ACM SIGCSE technical symposium on computer science
education. 111–116.

[9] Stephan Diehl. 2007. Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer Science & Business Media.

[10] Joseph Ditton, Hillary Swanson, and John Edwards. 2021. External Imagery in
Computer Programming. In Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education. 1226–1231.

[11] John Edwards, Juho Leinonen, Chetan Birthare, Albina Zavgorodniaia, and Arto
Hellas. 2020. Programming Versus Natural Language: On the Effect of Context
on Typing in CS1. In Proceedings of the 2020 ACM Conference on International
Computing Education Research. 204–215.

[12] John Edwards, Juho Leinonen, and Arto Hellas. 2020. A study of keystroke
data in two contexts: Written language and programming language influence
predictability of learning outcomes. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. 413–419.

[13] Kenny Heinonen, Kasper Hirvikoski, Matti Luukkainen, and Arto Vihavainen.
2014. Using codebrowser to seek differences between novice programmers. In
Proceedings of the 45th ACM technical symposium on Computer science education.
229–234.

[14] Arto Hellas, Juho Leinonen, and Petri Ihantola. 2017. Plagiarism in take-home
exams: help-seeking, collaboration, and systematic cheating. In Proceedings of the
2017 ACM conference on innovation and technology in computer science education.
238–243.

[15] Juha Helminen, Petri Ihantola, Ville Karavirta, and Lauri Malmi. 2012. How
do students solve parsons programming problems? an analysis of interaction
traces. In Proceedings of the ninth annual international conference on International
computing education research. 119–126.

[16] Christopher David Hundhausen, Daniel M Olivares, and Adam S Carter. 2017.
IDE-based learning analytics for computing education: a process model, critical
review, and research agenda. ACM Transactions on Computing Education (TOCE)
17, 3 (2017), 1–26.

[17] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of recent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli calling international conference on computing education
research. 86–93.

[18] Petri Ihantola and Andrew Petersen. 2019. Code complexity in introductory
programming courses. In Proceedings of the 52nd Hawaii International Conference
on System Sciences.

[19] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. Proceedings of the 2015 ITiCSE on Working
Group Reports (2015), 41–63.

[20] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing
education research. 73–84.

[21] Philip M Johnson, Hongbing Kou, Joy M Agustin, Qin Zhang, Aaron Kagawa,
and Takuya Yamashita. 2004. Practical automated process and product metric col-
lection and analysis in a classroom setting: Lessons learned from Hackystat-UH.

In Proceedings. 2004 International Symposium on Empirical Software Engineering,
2004. ISESE’04. IEEE, 136–144.

[22] Ayaan M Kazerouni, Stephen H Edwards, T Simin Hall, and Clifford A Shaffer.
2017. DevEventTracker: Tracking development events to assess incremental
development and procrastination. In Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Education. 104–109.

[23] Juho Leinonen. 2019. Keystroke Data in Programming Courses. Ph.D. Dissertation.
University of Helsinki.

[24] Juho Leinonen, Leo Leppänen, Petri Ihantola, and Arto Hellas. 2017. Comparison
of time metrics in programming. In Proceedings of the 2017 acm conference on
international computing education research. 200–208.

[25] Juho Leinonen, Krista Longi, Arto Klami, Alireza Ahadi, and Arto Vihavainen.
2016. Typing patterns and authentication in practical programming exams. In
Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. 160–165.

[26] Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Automatic
inference of programming performance and experience from typing patterns. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
132–137.

[27] Krista Longi, Juho Leinonen, Henrik Nygren, Joni Salmi, Arto Klami, and Arto
Vihavainen. 2015. Identification of programmers from typing patterns. In Proceed-
ings of the 15th Koli Calling conference on computing education research. 60–67.

[28] Yoshiaki Matsuzawa, Ken Okada, and Sanshiro Sakai. 2013. Programming process
visualizer: a proposal of the tool for students to observe their programming
process. In Proceedings of the 18th ACM conference on Innovation and technology
in computer science education. 46–51.

[29] Anna-Liisa Mattila, Petri Ihantola, Terhi Kilamo, Antti Luoto, Mikko Nurminen,
and Heli Väätäjä. 2016. Software visualization today: Systematic literature review.
In Proceedings of the 20th International Academic Mindtrek Conference. 262–271.

[30] Christian Murphy, Gail Kaiser, Kristin Loveland, and Sahar Hasan. 2009. Retina:
helping students and instructors based on observed programming activities. In
Proceedings of the 40th ACM technical symposium on Computer Science Education.
178–182.

[31] Cindy Norris, Frank Barry, James B Fenwick Jr, Kathryn Reid, and Josh Rountree.
2008. ClockIt: collecting quantitative data on how beginning software develop-
ers really work. In Proceedings of the 13th annual conference on Innovation and
technology in computer science education. 37–41.

[32] Renato Lima Novais, André Torres, Thiago SoutoMendes, Manoel Mendonça, and
Nico Zazworka. 2013. Software evolution visualization: A systematic mapping
study. Information and Software Technology 55, 11 (2013), 1860–1883.

[33] Petrus Peltola, Vilma Kangas, Nea Pirttinen, Henrik Nygren, and Juho Leinonen.
2017. Identification based on typing patterns between programming and free
text. In Proceedings of the 17th Koli Calling International Conference on Computing
Education Research. 163–167.

[34] Raymond Scott Pettit, John D Homer, Kayla Michelle McMurry, Nevan Simone,
and Susan A Mengel. 2015. Are automated assessment tools helpful in program-
ming courses?. In 2015 ASEE Annual Conference & Exposition. 26–230.

[35] Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas Guibas. 2015. Au-
tonomously generating hints by inferring problem solving policies. In Proceedings
of the second (2015) acm conference on learning@ scale. 195–204.

[36] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.
2012. Modeling how students learn to program. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education. 153–160.

[37] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing: local
algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. 76–85.

[38] Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live
Coding: A Review of the Literature. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1. 164–170.

[39] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K
Hollingsworth, and Nelson Padua-Perez. 2006. Experiences with marmoset:
designing and using an advanced submission and testing system for program-
ming courses. ACM Sigcse Bulletin 38, 3 (2006), 13–17.

[40] Alexandru Telea and David Auber. 2008. Code flows: Visualizing structural
evolution of source code. In Computer Graphics Forum, Vol. 27. Wiley Online
Library, 831–838.

[41] Daniel Toll. 2016. Measuring Programming Assignment Effort. Ph.D. Dissertation.
Faculty of Technology, Linnaeus University.

[42] Daniel Toll and Anna Wingkvist. 2018. Visualizing Programming Session Time-
lines. In Proceedings of the 11th International Symposium on Visual Information
Communication and Interaction. 106–107.

[43] Arto Vihavainen, Juha Helminen, and Petri Ihantola. 2014. How novices tackle
their first lines of code in an ide: Analysis of programming session traces. In Pro-
ceedings of the 14th Koli Calling International Conference on Computing Education
Research. 109–116.

[44] Arto Vihavainen, Matti Luukkainen, and Petri Ihantola. 2014. Analysis of source
code snapshot granularity levels. In Proceedings of the 15th annual conference on

information technology education. 21–26.
[45] Lucian Voinea, Alex Telea, and Jarke J Van Wijk. 2005. CVSscan: visualiza-

tion of code evolution. In Proceedings of the 2005 ACM symposium on Software
visualization. 47–56.

[46] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2013. Predicting
performance in an introductory programming course by logging and analyzing
student programming behavior. In 2013 IEEE 13th international conference on
advanced learning technologies. IEEE, 319–323.

[47] Maximilian Rudolf Albrecht Wittmann, Matthew Bower, and Manolya Kavakli-
Thorne. 2011. Using the SCORE software package to analyse novice computer
graphics programming. In Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education. 118–122.

[48] Albina Zavgorodniaia, Raj Shrestha, Juho Leinonen, Arto Hellas, and John Ed-
wards. 2021. Morning or Evening? An Examination of Circadian Rhythms of CS1
Students. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, 261–272.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Code and snapshot playback
	2.2 Structure of the code and state space
	2.3 Code measures over time
	2.4 Combining location and time in pixel maps

	3 CodeProcess Chart and Software
	3.1 CodeProcess chart
	3.2 Code playback
	3.3 Final code

	4 Think-aloud Study
	4.1 Context and data
	4.2 Study details
	4.3 Student process
	4.4 Plagiarism detection
	4.5 Interpretability of the CodeProcess chart
	4.6 Feedback to the student
	4.7 Other results

	5 Conclusions
	References

