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ABSTRACT
When student programs are compared for similarity, certain seg-
ments of code are always sure to be similar. Some of these segments
are boilerplate code – public static void main String [] args and the
like – and some will be code that was provided to students as part
of the assessment specification. The purpose of this working group
is to explore what other code is expected to be reasonably common
in student assessments, and should therefore be excluded from sim-
ilarity checking. The answers will clearly vary with programming
language, and perhaps with level of assessment item.

Working group members will collect assessment submissions
from their own or their colleagues’ students, and it is hoped that
these submissions will together encompass a wide variety of assess-
ment tasks in a wide variety of programming languages.

The working group aims to deliver clear guidelines as to what
code can reasonably be excluded from automatic code similarity
detection in various circumstances. It also aims to deliver a sum-
mary of what sort of code lecturers tend to provide for students
when setting an assigned task, and why they provide that code.
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1 BACKGROUND
In the attempt to ascertain whether different student programs
were written independently, some academics apply automatic code
similarity detection tools to help detect whether two or more pro-
grams are more similar than one would expect from coincidence
alone.

Mann and Frew [6] point out that, particularly in early program-
ming courses, most programs to achieve the same task will have a
great deal in common; that program similarity is not necessarily an
indicator of program copying or unauthorised assistance. Neverthe-
less, particularly in large classes, some sort of automatic filtering
of programs is almost essential to distinguish those programs that
are clearly independent from those that merit further examination
by a human to determine whether they have a common source.

Filtering techniques can be categorised into two groups based
on how the common code segments are defined: manually or auto-
matically. Manual techniques typically use a similarity algorithm to
search code for predefined segments, which are then removed prior
to comparison [2, 5, 7]. Such techniques have been applied in some
popular code similarity detection tools such as JPlag1 [8], MOSS2
[9], Plaggie3 [1], and Sherlock4 [4]. With automatic techniques,
common segments are determined on the basis of their distribu-
tion across the whole body of student assignments [3], the most
frequently occurring segments being deemed as common. This can

1https://jplag.ipd.kit.edu/
2https://theory.stanford.edu/ aiken/moss/
3https://www.cs.hut.fi/Software/Plaggie/
4https://warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/
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be a good approach if it is not known what code the programs are
likely to share.

Even though there are many filtering techniques available, the
criteria for determining common code segments seem somewhat
arbitrary. Further observation is needed to define what the criteria
are and why they are needed.

2 METHOD
There is a great deal of literature on the application of code sim-
ilarity detection to academic misconduct such as plagiarism and
collusion in computer programming. The working group will exam-
ine that literature for papers that mention the removal of common
code before programs are compared, and will collate any descrip-
tions of exactly what code is removed.

Each member of the working group will gather programming
assignments submitted by students in courses at their own institu-
tion. Members have all ascertained what process they are required
to follow to gain ethics approval for the use of student submissions,
and have applied for and attained such approval.

Members of the group will then use a code similarity detection
tool to analyse the programs from their own institutions. This
will help them to identify code that is common to many or all
of the programs, and they will attempt to identify that code as
standard, lecturer-provided, coincidentally common, etc. The ex-
pected deliverable from this analysis is a clear guideline as to what
code can generally be removed from programs written in various
programming languages before those programs are compared for
inappropriate similarity. Application of this guideline in automatic
code similarity detectors is likely to lead to more effective similarity
detection by reducing the number of false positives caused by the
necessarily common code.

The working group will conduct an informal survey of program-
ming educators, asking them if they are willing to provide sample

assessment specifications, along with explanations of their reasons
for including any specific code.

For the student assignments that they are analysing, members
will also examine the task specifications to determine whether code
was provided to the students, and, if so, the nature of that code.
Where possible, the person who set the task will be asked why they
provided the code to students. The expected deliverable from this
analysis is a summary of the sorts of code that people provide to
their students when setting assignment tasks, and why they provide
that code.
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