
Selection of Code Segments for Exclusion from Code Similarity
Detection

Simon∗
University of Newcastle

Australia
simon@newcastle.edu.au

Oscar Karnalim∗†

University of Newcastle
Australia

oscar.karnalim@uon.edu.au

Judy Sheard∗
Monash University

Australia
judy.sheard@monash.edu

Ilir Dema
University of Toronto Mississauga

Canada
ilir.dema@mail.utoronto.ca

Amey Karkare
Indian Institute of Technology Kanpur

India
karkare@iitk.ac.in

Juho Leinonen
University of Helsinki

Finland
juho.leinonen@helsinki.fi

Michael Liut
University of Toronto Mississauga

Canada
michael.liut@utoronto.ca

Renée McCauley
College of Charleston

USA
mccauleyr@cofc.edu

ABSTRACT
When student programs are compared for similarity, certain seg-
ments of code are always sure to be similar. Some of these segments
are boilerplate code – public static void main String [] args and the
like – and some will be code that was provided to students as part
of the assessment specification. The purpose of this working group
is to explore what other code is expected to be reasonably common
in student assessments, and should therefore be excluded from sim-
ilarity checking. The answers will clearly vary with programming
language, and perhaps with level of assessment item.

Working group members will collect assessment submissions
from their own or their colleagues’ students, and it is hoped that
these submissions will together encompass a wide variety of assess-
ment tasks in a wide variety of programming languages.

The working group aims to deliver clear guidelines as to what
code can reasonably be excluded from automatic code similarity
detection in various circumstances. It also aims to deliver a sum-
mary of what sort of code lecturers tend to provide for students
when setting an assigned task, and why they provide that code.

CCS CONCEPTS
• Social and professional topics → Computing education.

KEYWORDS
Plagiarism; collusion; academic integrity; code similarity detection

∗Working group leader
†Also with Maranatha Christian University.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE ’20, June 15–19, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6874-2/20/06.
https://doi.org/10.1145/3341525.3394987

ACM Reference Format:
Simon, Oscar Karnalim, Judy Sheard, Ilir Dema, AmeyKarkare, Juho Leinonen,
Michael Liut, and Renée McCauley. 2020. Selection of Code Segments for
Exclusion from Code Similarity Detection. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’20), June 15–19, 2020, Trondheim, Norway. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3341525.3394987

1 BACKGROUND
In the attempt to ascertain whether different student programs
were written independently, some academics apply automatic code
similarity detection tools to help detect whether two or more pro-
grams are more similar than one would expect from coincidence
alone.

Mann and Frew [6] point out that, particularly in early program-
ming courses, most programs to achieve the same task will have a
great deal in common; that program similarity is not necessarily an
indicator of program copying or unauthorised assistance. Neverthe-
less, particularly in large classes, some sort of automatic filtering
of programs is almost essential to distinguish those programs that
are clearly independent from those that merit further examination
by a human to determine whether they have a common source.

Filtering techniques can be categorised into two groups based
on how the common code segments are defined: manually or auto-
matically. Manual techniques typically use a similarity algorithm to
search code for predefined segments, which are then removed prior
to comparison [2, 5, 7]. Such techniques have been applied in some
popular code similarity detection tools such as JPlag1 [8], MOSS2
[9], Plaggie3 [1], and Sherlock4 [4]. With automatic techniques,
common segments are determined on the basis of their distribu-
tion across the whole body of student assignments [3], the most
frequently occurring segments being deemed as common. This can

1https://jplag.ipd.kit.edu/
2https://theory.stanford.edu/ aiken/moss/
3https://www.cs.hut.fi/Software/Plaggie/
4https://warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/

Working Group ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

500

https://doi.org/10.1145/3341525.3394987
https://doi.org/10.1145/3341525.3394987


be a good approach if it is not known what code the programs are
likely to share.

Even though there are many filtering techniques available, the
criteria for determining common code segments seem somewhat
arbitrary. Further observation is needed to define what the criteria
are and why they are needed.

2 METHOD
There is a great deal of literature on the application of code sim-
ilarity detection to academic misconduct such as plagiarism and
collusion in computer programming. The working group will exam-
ine that literature for papers that mention the removal of common
code before programs are compared, and will collate any descrip-
tions of exactly what code is removed.

Each member of the working group will gather programming
assignments submitted by students in courses at their own institu-
tion. Members have all ascertained what process they are required
to follow to gain ethics approval for the use of student submissions,
and have applied for and attained such approval.

Members of the group will then use a code similarity detection
tool to analyse the programs from their own institutions. This
will help them to identify code that is common to many or all
of the programs, and they will attempt to identify that code as
standard, lecturer-provided, coincidentally common, etc. The ex-
pected deliverable from this analysis is a clear guideline as to what
code can generally be removed from programs written in various
programming languages before those programs are compared for
inappropriate similarity. Application of this guideline in automatic
code similarity detectors is likely to lead to more effective similarity
detection by reducing the number of false positives caused by the
necessarily common code.

The working group will conduct an informal survey of program-
ming educators, asking them if they are willing to provide sample

assessment specifications, along with explanations of their reasons
for including any specific code.

For the student assignments that they are analysing, members
will also examine the task specifications to determine whether code
was provided to the students, and, if so, the nature of that code.
Where possible, the person who set the task will be asked why they
provided the code to students. The expected deliverable from this
analysis is a summary of the sorts of code that people provide to
their students when setting assignment tasks, and why they provide
that code.

REFERENCES
[1] Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. 2006. Plaggie: GNU-

licensed source code plagiarism detection engine for Java exercises. In Sixth Baltic
Sea conference on Computing Education Research, Koli Calling 2006. ACM Press,
Uppsala, 141–142. https://doi.org/10.1145/1315803.1315831

[2] Zoran Ðurić and Dragan Gašević. 2013. A source code similarity system for
plagiarism detection. Computer Journal 56, 1 (Jan 2013), 70–86. https://doi.org/
10.1093/comjnl/bxs018

[3] Christian Domin, Henning Pohl, and Markus Krause. 2016. Improving plagiarism
detection in coding assignments by dynamic removal of common ground. In 2016
CHI Conference Extended Abstracts on Human Factors in Computing Systems. ACM
Press, San Jose, 1173–1179. https://doi.org/10.1145/2851581.2892512

[4] Mike Joy and Michael Luck. 1999. Plagiarism in programming assignments. IEEE
Transactions on Education 42, 2 (1999), 129–133. https://doi.org/10.1109/13.762946

[5] Dragutin Kermek and Matija Novak. 2016. Process model improvement for source
code plagiarism detection in student programming assignments. Informatics in
Education 15, 1 (2016), 103–126. https://doi.org/10.15388/infedu.2016.06

[6] Samuel Mann and Zelda Frew. 2006. Similarity and originality in code: plagiarism
and normal variation in student assignments. In Eighth Australasian Computing
Education Conference. Australian Computer Society, Inc, Hobart, 143–150.

[7] Jonathan YH Poon, Kazunari Sugiyama, Yee Fan Tan, and Min-Yen Kan. 2012.
Instructor-centric source code plagiarism detection and plagiarism corpus. In
17th ACM Annual Conference on Innovation and Technology in Computer Science
Education. ACM Press, Haifa, 122. https://doi.org/10.1145/2325296.2325328

[8] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. 2002. Finding plagiarisms
among a set of programs with JPlag. Journal of Universal Computer Science 8, 11
(2002), 1016–1038.

[9] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing: local
algorithms for document fingerprinting. In 2003 ACM International Conference
on Management of Data. ACM Press, San Diego, 76–85. https://doi.org/10.1145/
872757.872770

Working Group ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

501

https://doi.org/10.1145/1315803.1315831
https://doi.org/10.1093/comjnl/bxs018
https://doi.org/10.1093/comjnl/bxs018
https://doi.org/10.1145/2851581.2892512
https://doi.org/10.1109/13.762946
https://doi.org/10.15388/infedu.2016.06
https://doi.org/10.1145/2325296.2325328
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770

	Abstract
	1 Background
	2 Method
	References



