On the comprehensibility of functional decomposition: An
empirical study

Ewan Tempero
University of Auckland
Auckland, New Zealand

e.tempero@auckland.ac.nz

Andrew Luxton-Reilly
University of Auckland
Auckland, New Zealand

a.luxton-reilly@auckland.ac.nz

Asma Shakil
University of Auckland
Auckland, New Zealand

asma.shakil@auckland.ac.nz

Yu-Cheng Tu
University of Auckland

Auckland, New Zealand
yu-cheng.tu@auckland.ac.nz

ABSTRACT

Folk-wisdom in software engineering suggests that small functions
that adhere to the principle of single-responsibility have several ad-
vantages over longer, monolithic functions, including improvement
in code comprehension. Despite this widespread view, empirical re-
search on the impact of functional decomposition on understanding
code is sparse, yet it is central to software development practices.

In this study, we investigated the impact of functional decom-
position on understanding using a controlled experiment in which
participants were tasked with comprehending code for two differ-
ent functionalities, each implemented as either a single function or
multiple functions, and recorded the reading time, code description
accuracy, and behaviour question responses.

Despite a carefully constructed empirical study, we find that
the influence of function decomposition on code understanding is
inconclusive, suggesting that functional decomposition does not
universally enhance code comprehensibility, and context-aware
guidelines for code structuring may promote better comprehensi-
bility. Our negative result contributes to the ongoing refinement of
software engineering best practices for creating more maintainable
software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’24, April 15-16, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0586-1/24/04...$15.00
https://doi.org/10.1145/3643916.3644432

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Diana Kirk
University of Auckland
Auckland, New Zealand

diana kirk@auckland.ac.nz

Robert Sheehan
University of Auckland
Auckland, New Zealand

r.sheehan@auckland.ac.nz

James Finnie-Ansley
University of Auckland
Auckland, New Zealand

james.finnie-ansley@auckland.ac.nz

Juho Leinonen
University of Auckland
Auckland, New Zealand

juho.leinonen@auckland.ac.nz

James Tizard
University of Auckland
Auckland, New Zealand

james.tizard@auckland.ac.nz

Burkhard C. Wiinsche
University of Auckland
Auckland, New Zealand

burkhard@cs.auckland.ac.nz

CCS CONCEPTS

« Software and its engineering — Abstraction, modeling and
modularity; Maintaining software.

KEYWORDS

Functional decomposition, Comprehensibility, Controlled experi-
ment, Program comprehension

ACM Reference Format:

Ewan Tempero, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly,
Diana Kirk, Juho Leinonen, Asma Shakil, Robert Sheehan, James Tizard,
Yu-Cheng Tu, and Burkhard C. Wiinsche. 2024. On the comprehensibility
of functional decomposition: An empirical study. In 32nd IEEE/ACM Inter-
national Conference on Program Comprehension (ICPC 24), April 15-16, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3643916.3644432

1 INTRODUCTION

Decomposition is regarded as beneficial to software quality. One
decomposition mechanism is functions. This raises the question of
what benefits accrue from decomposing code into multiple func-
tions. In this paper, we present the results of a study meant to
be a step on the way to answering this question. This study is a
controlled experiment whose independent variable is whether func-
tionality is implemented as a single function or decomposed into
multiple functions, and the dependent variable is comprehensibility.

One attribute of software quality is comprehensibility, that is,
how easy it is to understand the code. Fowler [16] says of functions
“In our experience, the programs that live best and longest are those
with short functions” . He goes on to say “Since the early days
of programming, people have realized that the longer a function
is, the more difficult it is to understand” (emphasis ours). While

https://orcid.org/0000-0002-3786-1707
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0002-4279-6284
https://orcid.org/0000-0001-8269-2909
https://orcid.org/0000-0002-3042-423X
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0003-4760-3792
https://orcid.org/0009-0000-3387-380X
https://orcid.org/0000-0001-9076-0852
https://orcid.org/0000-0001-7284-7081
https://orcid.org/0000-0002-8013-4118
https://doi.org/10.1145/3643916.3644432
https://doi.org/10.1145/3643916.3644432
https://doi.org/10.1145/3643916.3644432

ICPC *24, April 15-16, 2024, Lisbon, Portugal

Fowler refers to function size, he is really talking about how code is
decomposed into functions, suggesting choosing a decomposition
that results in small(er) functions over long(er) functions.

Other respected commentators advocate small functions over
long functions. Martin is very adamant: “The first rule of functions
is they should be small. The second rule of functions is that they
should be smaller than that” [20].

Yet when we present such advice to our students, we get ques-
tions such as “But won’t it be hard to keep track of all the functions?”
This seems a plausible concern. If the functionality is the same, then
the smaller the functions, the more there will be, and there will be
the problem of understanding how the functions interact to provide
the functionality.

The general belief is that the benefits of multiple small functions
outweigh the potential disadvantages. For example, A blog post
by Sam Koblenski! notes the disadvantage “That may be counter-
intuitive because you would think having so many functions with
only a handful of code in them would force you to jump around the
code a lot more, searching for the implementation of this or that
function but goes on to discuss how small functions will help with
code understanding, for example, saying “Finding that code block is
actually easier when you don’t have to sift through hundreds of lines
of irrelevant code in the same function”

Despite the general belief that decomposing code into small func-
tions improves comprehensibility, there is little evidence to support
this (see Section 2). We decided to investigate these claims, starting
with the simplest comparison between choices of decomposition:
none at all (a single function) versus multiple functions.

We designed a between-subjects experiment following a similar
methodology used by past program comprehension studies (e.g.
[19]). Our results did not support the belief that multiple functions
are more comprehensible than a single function. Such decompo-
sition may improve comprehensibility in some cases, but it is not
universally the case. This suggests that the consequences of decom-
position are quite complex and so deserve in-depth study.

The rest of this paper is organised as follows. In the next section,
we present relevant background material and related research. In
Section 3 we detail the methodology we used. We present the results
of our study in Section 4 and discuss them in Section 5. We present
our conclusions in Section 6. The materials used in our experiment
can be found in our replication package [40].

2 BACKGROUND AND RELATED WORK

The importance of program comprehension. Program comprehen-
sion is an essential aspect for both the maintenance and enhance-
ment of an existing code-base. Much previous research has high-
lighted the importance of comprehension activities, finding that
they consume a significant proportion of development time [8], [14],
[18], [23], [45]. Zelkowitz et al’s early work (1978) claimed that
program comprehension accounts for more than half the time spent
maintaining software [45]. Zelkowitz’s claim was later supported
by work from Corbi [8], and Fjeldstad and Hamlen [14]. Minelli et
al’s and Xia et al’s more recent studies (2015, 2017) were also in
line with Zelkowitz [23], [44]. For example, Minelli investigated

!https://sam-koblenski.blogspot.com/2014/01/functions-should-be-short-and-
sweet-but.html

Tempero et al.

IDE interactions from 18 developers, observing over 700 working
hours, and found the developers spent (on average) 70% of their
time on program comprehension activities. Ko et al. also found
that comprehension consumed a significant proportion of software
maintenance time. They used controlled experiments, with 10 par-
ticipants performing debugging tasks, finding the developers used
approximately 35% of their time on program comprehension [18].

The factors that affect program comprehension. A number of pre-
vious studies have investigated the factors that impact program
comprehension. Both Siegmund et al. and Xia et al. investigated the
relationships between programmer experience and program com-
prehension [34], [44]. Xia et al. found that senior developers spend
a significantly smaller proportion of their time on program compre-
hension, compared to junior developers. Looking at the impact of
code design, Teasley found that naming style within programs has
an impact on comprehension [38]. Lawrie et al. showed that full
word identifiers (class, method, and variable names) lead to the best
comprehension, compared to single letters, and abbreviations [19].

Controlled experiments in program comprehension. There has
been much research in program comprehension that has used con-
trolled experiments. For example, Wyrich et al. found 95 studies
that measured bottom-up code comprehension using human par-
ticipants [43]. However such experiments must be performed with
care as they are difficult to do well [11, 35, 36].

Modularity and Comprehension - Wisdom. The association be-
tween modular structure and ease of understanding has long been
accepted by the software community as a given. In 1972, Parnas
described modularisation as “a mechanism for improving the flex-
ibility and comprehensibility of a system” [27]. The Boehm et al.
product quality model cites Conciseness as an attribute of Under-
standability and states that a requirement of conciseness is that
programs should neither be “excessively fragmented into modules,
..., functions and sub-routines” nor that “the same sequence of code
is repeated in numerous places, rather than defining a subroutine
.2 [3]. This suggests a relationship between aspects of modularity
(modules, functions and sub-routines) and understandability. Meyer
related the design of modules to understandability [21].

A draft of item I-0140 in the US National Institute of Standards
and Technology (NIST) Public Interpretations Database has the
title “Modularity is for Understandability, ..” [25]. Many popular
online programming sites note the link between modularity and
understandability. A post in the developer insights category in the
TINY organisation states that one of the advantages of modularity
is that “Code is easier to read” [22]. Caitlin Lee from Medium states
that modular code is “Easier to understand each module and their
purpose” [6].

Characterising Modularity. There have been several definitions
of what ‘modularity’ is. The ISO/IEC Standard for Systems and
software Quality Requirements and Engineering (SQuaRE) defines
modularity as the “degree to which a system or computer program
is composed of discrete components such that a change to one
component has minimal impact on other components” [15]. McCall
et al. consider modularity to be synonymous with structuredness
and the authors provide several definitions from different authors.
These address aspects of combining modules and how a program

https://sam-koblenski.blogspot.com/2014/01/functions-should-be-short-and-sweet-but.html
https://sam-koblenski.blogspot.com/2014/01/functions-should-be-short-and-sweet-but.html

On the comprehensibility of functional decomposition: An empirical study

is organised. Boehm at al. relate Conciseness, a pre-requisite of
Understandability, to the existence of functions and hints on the
tension between too many and too few functions [3].

Parnas used the definition of modularity provided by Gauthier
and Pont [17], which referred to “separate, distinct program mod-
ules”, where the modules are “well-defined”. It also refers to the
consequences of a “good modularisation”, such as modules being
able to be tested independently and limiting the scope of what
needs to be understood when debugging.

Booch defines it as “the property of a system that has been
decomposed into a set of cohesive and loosely-coupled modules”
[4, p57]. Berard defines it as “the extent to which a larger system
is broken into smaller, easily integrated, easily maintained, easily
tested, easily reused, components;” [2, p334]. Pfleeger suggest that
“In a modular design, the components have clearly defined inputs
and outputs and each component has a clearly stated purpose.” [28,
p207].

The various programming languages and paradigms define the
term ‘module’ in different ways. The Python Foundation defines
module as “a file containing Python definitions and statements” [30].
Findlay and Watt describe a module in Pascal as “either a single
subprogram or a related group of subprograms” [12]. The Java
documentation describes a module as a “set of packages” where
“The members of a package are classes and interfaces” [26].

Modules are hierarchical and describe code structures that range
from a single function or subroutine to a large program containing
many packages, files and/or classes. In this study, we focus on single
functions.

Modularity and Comprehension - Studies. We found few stud-
ies that formally investigate the links between modular code and
understanding. We overview these below.

Alardawi and Agil investigated the effects of class structure
on program comprehension [1]. They carried out three controlled
experiments on 211 first year programming students from three
different institutions. Most of the participants had no previous ex-
perience in object-oriented programming but had some experience
with Java (one institution) or Visual Basic (two institutions). The
programs presented to students were versions of a simple program
that required no domain knowledge. Participants were divided into
two matched groups and given a version of either a class-based
or a non-class-based version and some questions to establish com-
prehension. Visual Basic was used for two of the experiments and
Java for the third. Responses were timed. Statistical analysis (Mann-
Whitney U non-parametric test) showed that students given the
class-based versions performed better in two experiments (one
Visual Basic and one Java) and no effect was observed for the third.

For this experiment, modularity is characterised by class struc-
ture. The size of the program is not given but is described as “larger
compared to those used in prior related studies” but “still small
compared to most OO applications” [1]. Our interest is in modu-
larity as characterised by the use of functions and so our goals are
different to those of Alardawi and Agil.

Tempero at al. conducted an experiment to investigate how mod-
ularity affected students’ ability to understand and change code [39].
The motivation for the study was the observation that students
struggled to produce designs that were modular, “despite the fact

ICPC *24, April 15-16, 2024, Lisbon, Portugal

that the assessment criteria included a requirement for good modu-
larity”. Forty fourth year software engineering and postgraduate
computer science students were asked to modify the output of
a small Java program that analysed an input data file and pro-
duced a list of module names. Each student was assigned either the
code with lower class dependence with respect to the task (higher
modularity) or with higher class dependence (lower modularity).
Students’ attempts at running the supplied unit tests were logged to
ascertain success in changing the program and students were asked
questions about the program to assess their understanding. The
authors found that the high modularity design was associated with
greater success in changing the code but tended to be associated
with lower understanding, indicating a “tension between under-
standability and modifiability” [39]. For this study, the programs
comprised multiple modules, with modularity characterised by de-
pendencies among modules. For our study, programs are smaller,
with modularity characterised by the use of functions.

Several studies have been carried out to understand the differ-
ence in the mental representations created by novice program-
mers when shown programs in the procedural and object-oriented
styles [32, 41, 42]. Ramalingam and Wiedenbeck carried out a study
to determine the difference in the mental representations created
by novice programmers when shown programs in the procedural
and object-oriented styles [32]. 75 students in an introductory pro-
gramming course were shown brief C++ program segments, three
written in the procedural style and three in the OO style. They
then answered questions relating to operations, control flow, data
flow, state and function. Programs fitted on one page, with the
OO program containing one class with no complex features, for
example, polymorphism and inheritance. The imperative version
contained a main function only. They found that students made a
lower number of errors in the procedural version. Wiedenbeck et
al. extended the study to larger programs and found no significant
difference between the number of questions answered correctly but
found differences in the types of question answered correctly [42].

Although the goal of these studies was focused on mental models,
the Ramalingen and Wiedenbeck study relates to ours, in that the
programs used were small and essentially differed in the use of
functions.

Sellitto et al. investigated the effects of refactoring on Program
Comprehension. The study was based on 156 open source projects
and Scalabrino et al’s eight readability metrics used for the anal-
ysis [33]. This and other similar studies include other aspects of
readability and are more general than ours, which focuses on the
use of functions.

3 METHODOLOGY

The overall goal of our research project is to understand how choice
of functions affects comprehensibility of code. Specifically, in the
study reported in this paper, our research question is:

RQ: Is code providing some functionality organised as multiple
functions easier to understand than code providing the same function-
ality as a single function?

In order to discuss our methodology, we need to refer to the
functionality being implemented, the implementations are described

ICPC *24, April 15-16, 2024, Lisbon, Portugal

in terms of the functions it contains. In order to reduce the confusion,
we will use the following terminology.

We will use operation to indicate which functionality we are
referring to, so no two operations provide the same functional-
ity. An operation has multiple implementations. We will refer to
different implementations as a version. We will use SFV to refer
to the implementation that consists of a single function, that is,
the single-function version. MFV will refer to the multiple-function
version.

3.1 Overview
The general methodology we have adopted is as follows:

(1) Identify some operations.

(2) Create an SFV and a MFV for each operation.

(3) Have human participants perform comprehension tasks on
the different versions for the operations and measure their
performance.

There are many variables that need to considered:

e What operation to choose. In particular, the size of the oper-
ation may be important. Some effects may not be visible in
small amounts of code, however larger amounts of code will
take more time, risking participant fatigue or incompletion.

e Operation familiarity. If the operation is well-known, the
participant may be able to successfully guess answers to
questions independently of how the code is presented. [19]

e Number of operations. The nature of the operation may have
an effect. This suggests having more than one operation.
However with a limited participant pool, having too many
versions means the sample size per version may not be big
enough for any effect to be visible.

o The nature of the operation. The essential complexity of
different tasks may be different [5, Chap.16]. It would be
reasonable to expect that operations with different levels of
essential complexity will require different amounts of effort
to understand independent of the nature of the implementa-
tion.

e The nature of the implementation. There are many ways
to implement the same operation, and even limiting in one
dimension (e.g. having a single function), there are still many
possibilities. It may be that some details have a bigger effect
than how the code is decomposed. For example, it is generally
believed that choice of identifier name effects comprehensi-
bility. We need to ensure that the only variable that varies is
the decomposition. We discuss this further in Section 3.2.

o The choice of SFV and MFV for the same operation. We need
to ensure that the difference between the SFV and MFV is
only in the decomposition. We discuss this further in 3.2.

o The choice of decomposition. It may be that some decompo-
sitions are harder to understand than others. We discuss this
further in 3.2

e Recruitment. What participants we have is impacted by how
we recruit. For example, are the participants students or pro-
fessionals, are they volunteers or not, or are they rewarded
for their time.

e Study environment. Are the tasks in the experiment per-
formed in-person or online? Are the participants known or

Tempero et al.

anonymous? Is the environment they use familiar to them
(e.g. their standard IDE) or not?

o As the experiment involves human participants, we must
have ethics approval. There are a number of requirements
that must be met to acquire this.

e Operationalisation of dependent variable. In this case the
variable is comprehensibility. As a construct [31], it is not
subject to direct measurement, so we have to ensure what
we do measure provides information for our variable.

e Choice of tasks. This is related to the operationalisation.
What we refer to as comprehension has many facets, and
different tasks may involve different facets [11] and allow
for different kinds of measurements.

o Experimental design. Is it within subject or between sub-
ject? Within subject potentially gives more data but risks a
learning effect, and takes more time.

Avoiding the risk for all variables is not feasible. There are a
number of potential threats to validity that must be addressed (see,
e.g. [11, 35]). So, as with any experimental design, trade-offs must
be made to minimise such threats. As this was our first study in
this area there were many unknowns, so our philosophy was to
minimise the cost.

We followed, where possible, the checklist provided by Siegmund
and Schumann ([35, Appendix]) and the advice of Feitelson [11].
Below we discuss the decisions we made to mitigate various threats,
and revisit possible threats to validity in Section 5.1.

We choose to maximise internal validity over external valid-
ity [36] as the cost of addressing both would be too high. Thus
we limited our study to a single language (Java) and limited our
population to students (see Section 3.4). We ran our study in a
regularly-scheduled class in a relevant course in order to have a
fairly uniform sample with respect to domain knowledge, education,
and programming language.

The study was presented to the class as an exercise similar to
previous class exercises to reduce evaluation apprehension and
the Hawthorne effect. Two of the authors and a teaching assistant
were in the room during the study to ensure process conformance,
however the data submitted by the participants was anonymous
(see Section 3.5) to further reduce evaluation apprehension.

The tasks carried out by participants were designed to take 30
minutes in total (see Section 3.2) to avoid fatigue. The class was 50
minutes long so there should have been no concerns regarding time
pressure. We did not identify the hypotheses under study, or even
that different members of the class would see different treatments.
This reduced possible Rosenthal effects.

We had several different tasks to reduce mono-operation bias
and used two metrics for the main task to reduce mono-method
bias (Section 3.3).

3.2 Artefacts

As mentioned above, how the code is presented is a key factor in
ensuring that only the existence of the decomposition is the variable.
These are the decisions we took to address this requirement.

We wanted to have at least two operations of different kinds. We
wanted something large enough to be non-trivial, yet small enough
that the whole study could be completed in about 30 minutes.

On the comprehensibility of functional decomposition: An empirical study

We developed several candidates with the original intention of
using them all, but concluded it would be difficult to get a large-
enough sample for each version so in the end chose to use only two
operations. These were:

Days Since Determines if a date is valid and if so determines the

number of days of the given date since the 31st of December
1899.
This is “computational” in nature, with a somewhat (but not
completely) simple input, and a single output. We decided
against a larger task such as computing the difference be-
tween two arbitrary dates, as the implementation would be
too different in size to our other choice. The SFV we used is
shown in Figure 2.

Weather Report the average rainfall and humidity, and number
of days with rain, from the valid data in the supplied data
This is a version of the so-called “rainfall problem” [37]. This
is different in nature to Days Since as it requires processing
a collection of data. The requirements were extended from
the original rainfall problem to give an operation of sufficient
size. The SFV we used is shown in Figure 1.

One possible confounding factor is that one version has informa-
tion that the other does not. In particular, the version with multiple
functions will have extra information in the form of the function
names. In order to mitigate this threat, we included comments in
the SFV that provided the same information as the function name
in the MFV. For example, in the MFV for Days Since there is a func-
tion named isValidYear. Matching this in the SFV is the comment
shown on line 10 of Figure 2.

Space limits means we cannot provide the full MFV for the two
operations, but we show the top level functions for each in Figures
3 and 4.

Another concern was the choice of identifier names more gener-
ally, not just for function names. This means using the same names
in both versions for local variables where possible. This includes
using actual parameter names as the formal parameter names.

There are usually many ways to implement a given function, and
so we had to ensure that our particular choice did not favour the
SFV over the MFV or vice versa. For example, Weather could be
implemented as a single loop that combines the removal of invalid
data and the computation of averages and number of rainy days,
or it could be implemented as multiple passes through the data (e.g.
see [13]). We were concerned that decomposing the single loop
design into multiple functions would lead to something that looked
quite different, whereas there seemed a natural decomposition of
the multiple-pass design.

The choice of decomposition was also a factor, in particular how
big the resulting functions should be. Martin suggests functions
should not be more than 4 lines [20, p34]. We preferred a decompo-
sition that had a similar structure to the SFV.

Different people in the team created candidates, both SFV and
MFV. Then, once the Weather and Days Since were chosen, their
implementations went through iterations with the team reviewing
and the original author responding to the reviews.

We limited the availability of tools. In fact, we presented the code
as images rather than text, so that participants could not easily copy
it into an IDE or similar tool (see Section 3.5).

0NN U W N

ICPC *24, April 15-16, 2024, Lisbon, Portugal

public class WeatherSFV {
private static int RAINFALL_POS = 0;
private static int HUMIDITY_POS = 1;
private static int END_OF_DATA = -999;

public double[] processData(List<List<Integer>> originalData) {
// Truncate the data to everything before the end of data
List<List<Integer>> dataUpToEnd = new ArrayList<List<Integer>>();
for (List<Integer> dailyData: originalData) {
if (dailyData.get(RAINFALL_POS) != END_OF_DATA &&
dailyData.get(HUMIDITY_POS) != END_OF _DATA) {
dataUpToEnd.add(dailyData);
} else {
break;

}

// Remove all invalid values
List<List<Integer>> validData = new ArrayList<List<Integer>>();
for (List<Integer> dailyData: dataUpToEnd) {
if (dailyData.get(RAINFALL_POS) >= 0 &&
dailyData.get(HUMIDITY_POS) >= 0) {
validData.add(dailyData);
}
}

// Determine average rainfall
double averageRainfall = 0.0;
if (validData.size() != 0) {
double sumRain = 0;
for (List<Integer> dailyData: validData) {
sumRain = sumRain + dailyData.get(RAINFALL_POS);
}
averageRainfall = sumRain/validData.size();
}
// Determine average humidity
double averageHumidity = 0.0;
if (validData.size() != 0) {
double sumHumidity = 0;
for (List<Integer> dailyData: validData) {
sumHumidity = sumHumidity + dailyData.get(HUMIDITY_POS);
}
averageHumidity = sumHumidity/validData.size();
}
//" Determine number of rainy days
int rainyDays = 0;
for (List<Integer> dailyData: validData) {
if (dailyData.get(RAINFALL_POS) > 0) {
rainyDays = rainyDays + 1;

}

double[] result = { averageRainfall, averageHumidity, rainyDays };
return result;
}
}

Figure 1: Weather Single. Code has been slightly modified
for presentation

3.3 Instrument

The instrument that was used presented participants with a set
of tasks delivered via Qualtrics?, an on-line survey delivery sys-
tem (see also Section 3.5). The tasks are organised into sections as
described below.

Demographics. This section asked questions about the program-
ming courses participants had taken, how much programming ex-
perience they had in general, and their experience and confidence
in programming in Java. This was to allow us to identify those

2qualtrics.com

qualtrics.com

® T U AW N =

ICPC *24, April 15-16, 2024, Lisbon, Portugal

Tempero et al.

public class DaysSingle {
private final int JANUARY = 0;
private final int FEBRUARY = 1;
//" (Remaining constants MARCH to DECEMBER omitted for presentation)
private final int[] LENGTH_OF_MONTH =
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
private final int ZERO_YEAR = 1900;

public String main(int day, int month, int year) {
// Is the year valid?
boolean isValidYear = year >= ZERO_YEAR;
// Is the month valid?
boolean isValidMonth = JANUARY <= month && month <= DECEMBER;
int monthLength = -1;
if (isValidMonth) {
monthLength = LENGTH_OF_MONTH[month];
}
// Is the year a leap year?
boolean isLeapYear =!(year % 4 != 0 ||
(year % 100 == 0 && year % 400 != 0));
if (month == FEBRUARY && isLeapYear) {
monthLength +=1;
}
// Is the day in the month valid?
boolean isValidDay = day > 0 && day <= monthLength;
// Is the given date valid?
if (isValidDay && isValidMonth && isValidYear) {
int days = 0;
// Days before the year.
for (int aYear = ZERO_YEAR; aYear < year; aYear++) {
days += 365;
isLeapYear = !(aYear %4 != 0 ||
(aYear % 100 == 0 && aYear % 400 != 0));
if (isLeapYear){
days += 1;
}
}
//" Days before the month
for (int aMonth = JANUARY; aMonth < month; aMonth++) {
days += LENGTH_OF _MONTH[aMonth];
isLeapYear = l(year %4 != 0 ||
(year % 100 == 0 && year % 400 != 0));
if (aMonth == FEBRUARY && isLeapYear) {
days += 1;
}
}
days += day;
return String.valueOf(days);
} else {
return "Invalid date";
}
}
}

Figure 2: Days Since Single. Code has been slightly modified
for presentation

whose responses were less to do with the treatment and more to
do with their lack of capability.

Pretest. The pretest section served two purposes. It provided a more
detailed assessment of the capability of the participants. It asked
simple questions testing the participants’ understanding of basic
Java concepts that are used in the task implementations, such as use

of arrays and the enhanced for-loop, by asking tracing questions.

Figure 5 shows one of the questions asked.

Warmup. The warmup section gave the participants a chance to
practice, so that any time they spent figuring out what they were
supposed to do was done here rather than in the main study. This

= O 000NN R W

_ o

N oUW N e

public static double[] processData(List<List<Integer>>originalData){
List<List<Integer>> dataUpToEnd = truncateToEndOfData(originalData);
List<List<Integer>> validData = getValidData(dataUpToEnd);

double averageRainfall = averageData(validData, RAINFALL_POS);
double averageHumidity = averageData(validData, HUMIDITY_POS);
double rainyDays = countPositive(validData, RAINFALL_POS);

double[] result = { averageRainfall, averageHumidity, rainyDays };
return result;

Figure 3: The top-level function for Weather.

public String main(int day, int month, int year) {
if (isValidDate(day, month, year)) {
return String.valueOf(totalDays(day, month, year));
} else {
return "Invalid date";
}
}

[A L R A

Figure 4: The top-level function for Days Since.

int[] list = { 1, -1, 2, -2, 3, -3 };
int count = 0;
for (int value: list) {
if (value > 0) {
count = count + 1;
b
}

System.out.println(count);

Q: What value is printed when the code above is executed?
(@) 0 (b) 1(c) 2(d) 3 (e) 4 (f) Unsure

Figure 5: An example Pretest question

Instructions: Study the code presented below. You will be asked a
question about this code on the following page. Once you leave
this page you will not be able to return, so spend as much time
as you need to understand this code. You may assume there are
no errors in the code.

Figure 6: Instructions for the “reading” task

was a very abbreviated example of what they would see in the
reading and behaviour sections (see below). This section was the
same for all participants.

Reading. The reading section was the first part of the main study.
Like similar previous studies (e.g. [19]), participants were first
shown some code (e.g. Figures 1 or 2) and asked to spend time
reading it to the point that they felt they understood what it did.
Figure 6 shows the text of the instructions participants received for
all versions.

On the comprehensibility of functional decomposition: An empirical study

Write 2-3 sentences explaining what the code you have just
studied on the previous page does. Your description should be at
a high-level but still be complete.

Figure 7: Explain in Plain English (EiPE) question text

o Given the [Weather code]. Suppose you had to change
to the code to ignore values larger than 100. Which of
the following sets of lines would you need to modify
(one or more lines) to achieve this change?

(a) 11-18 (b) 21-26 (c) 29-36 (d) 39-45 (e) 49-54

e Given the [Days Since code]. What is the value re-
turned for main(1, JANUARY, 1900)? Note that 1900 is
not a leap year.

(a) 1 (b) 365 (c) 2 (d) 0 (e) Invalid date

Figure 8: Example “behaviour” questions.

Participants then advanced to the next page and were asked to
provide a short description of the operation, that is, to “explain in
plain english” (EiPE). They were not able to return to the page with
the code. They were also asked to rate their confidence of their
answer. Figure 7 shows the text of the question for all versions.

We measured the time the participants spent reading the code
before moving on, and assessed the correctness of their explanation.

Behaviour. The behaviour section consisted of a set of questions
(5 for Weather, 6 for Days Since) asking for a more detailed un-
derstanding of the code, by showing how it behaved with different
inputs, what inputs were needed to produce specific outputs, or
what part of the code would need to change to change behaviour.
For each of these questions, participants were given access to the
code. Figure 8 gives two examples of the questions asked.

Final. In the final section, participants were asked to rate how easy
the version they saw was to understand, and they were presented
with the other version and asked which of the two versions they
thought was easier to understand.

3.4 Participants

We recruited our participants from a postgraduate course at The
University of Auckland: “Creating Maintainable Software”. The
course provides an in-depth look into the development and research
of maintainable software. Much of our initial material comes from
Martin’s Clean Code [20], and we critique and expand on it during
the course. It uses Java as the primary programming language.
The course consists of three one-hour lectures each week over
12 weeks. A typical week will consist of two lectures presenting
new content, covering topics including program comprehension, al-
terability, testability, dependency injection, SOLID principles, code
smells, and design quality. As part of the comprehension discus-
sion, we examine choice of identifier names (including names of

ICPC *24, April 15-16, 2024, Lisbon, Portugal

methods), formatting code for comprehensibility, and choice of
functions.

The third class in the week is a “discussion” session, where
students discuss questions provided by the instructors in groups
and post their responses to the course discussion boards. The class
ends with a debrief where the whole class discusses their responses.

The experiment was conducted in the week 5 discussion class.
The lectures earlier in that week had discussed advice on choosing
functions that result in comprehensible code. The students did not
know the nature of the experiment, in particular they did not know
what the research questions were nor the nature of the treatments.

The students had 35 minutes to complete the experiment. This
was followed by the usual discussion class debrief session, where
the students were asked to comment on the experimental design, in-
cluding speculating on what the research questions were, and what
risks different aspects of the experiment were meant to mitigate.

3.5 Delivery

We used Qualtrics to administer the experiment. Qualtrics is an
on-line survey platform that has different question types such as
multiple choice, text entry, and matrix table. We organised each
section of the experiment into blocks of questions. Each block
appears on a separate page except for the warmup, reading, and
behaviour sections where we explicitly display each question on a
separate page.

We set up the survey in a way that all participants must answer all
questions on a page before moving to the next page. Participants are
unable to go back to the previous page after clicking the next button.
This is to prevent participants to see the code when explaining their
understanding of the code during the reading section. To prevent
participants to simply copy and paste the code to any editors, we
create images of the source code using Carbon® using the standard
VSCode syntax colouring.

For each page of the survey, we use a timing question that is
hidden from the participants. The timing question records how long
participants view one page of the survey. It records information
such as the total number of seconds that the participant spent on the
page before clicking the next button. This allows us to see how long
each participant spends on reading code and answering questions.

We use the randomiser feature that allows us to randomly present
question blocks to participants. After the warmup section, partici-
pants will be randomly presented one of the four versions. We also
utilise the branch logic feature in Qualtrics to display the appro-
priate code comparison questions depending on which of the four
versions of code participants get to answer.

3.6 Analysis

The primary measurements used in our analysis are: the reading
time spent by participants, the correctness of their explanations,
and the correctness of the answers to the behaviour questions.

To evaluate correctness of explanations (EiPE), a suite of codes
was created identifying different aspects of participant responses
to the Days Since and Weather versions. Codes that identified
correct explanations (e.g. mentioning the sentinel for the Weather
problem, or the number of days for the Days Since problem) were

3https://carbon.now.sh

https://carbon.now.sh

ICPC *24, April 15-16, 2024, Lisbon, Portugal

given a binary score of +1 or 0; codes identifying erroneous or
incomplete explanations were given a binary score of -1 or 0. Codes
were assigned until agreed upon by the researchers. Codes were
then averaged for each participant.

The behaviour questions were all multiple choice questions. Par-
ticipant responses were given a score of 0 for an incorrect response
and a 1 for a correct response for each question. These scores were
then averaged for each participant.

3.7 Experimental Design

With the context as presented, we can now present our experiment.
Our independent variable is whether an implementation of an op-
eration is presented as a single function (SFV) or decomposed into
multiple functions (MFV).

The main dependent variables of interest are the time partici-
pants spent reading the code before advancing to the task of ex-
plaining, the accuracy of the explanation, and the correctness of
the answers to the behaviour questions.

We used a between-subjects design, that is, each participant
received only one treatment.

Our general hypothesis is that the MFV version is “easier to
understand” than the SFV version. This was operationalised as:

Hgme: The null hypothesis for reading time is that the time
taken by participants does not depend on the version.

Htlime: The alternative hypothesis is that less time is taken by
participants with the MFV version than those with the SFV
version.

HEiPE: The null hypothesis for the “Explanation in Plain Eng-
lish” is that the correctness of the explanation does not de-
pend on the version.

H]1aiP E. The alternative hypothesis is that the explanations by
participants with the MFV version are more correct than
those with the SFV version.

ngeh: The null hypothesis for the behaviour understanding is
that the participant’s scores to the behaviour questions do
not depend on the version.

H]feh: The alternative hypothesis is that the participants with
the MFV version get higher score than those with the SFV
version.

Note that these are all 1-way hypotheses. We use an alpha value of
0.05 as the threshold for statistical significance.

4 RESULTS

We had 64 complete all of the tasks, equally divided between the
two operations and two versions per operation (16 each). For our
analysis, we excluded those who scored below 50% for the Pretest,
meaning 4 were excluded. That left us with the following group
sizes: Weather SFV (14); Weather MFV (15); Days Since SFV (15);
Days SinceMFV (16).

For the code reading time, our hypothesis (Htlime) is that partici-
pants will spend less time reading the MFVs compared to the SFVs.
The code reading data is shown in Figure 9. For the Days Since
problem, participants spent an average of 109 and 110 seconds read-
ing the MFV and SFV treatments respectively. However, for the
Weather problem, this relationship is reversed with participants
spending an average of 244 and 184 seconds for the MFV and SFV

Tempero et al.

04:00- O
—— e
02:00- O | ’
Daysémg\e Weather‘Mu\tlp\e WeathévSlrwg\e
Variation

Reading Time (Mins)

White dots show means

Figure 9: Reading Time by Version

0.50-
O
0.25- l

000—===========~
l

Score

-0.25- L L
DaysSingle WeatherMultiple ~ WeatherSingle
Variation
White dots show means; Dashed line shows y = 0

Da\/sM‘umple

Figure 10: Explain in Plain English by Version

treatments. The differences according to a 1-tailed Mann-Whitney
are not significant in either the Days Since (W=107, p=0.31) or
Weather (W=120, p=0.75) cases.

For the explain in plain English question, our hypothesis (HllEiP E)
is that participant explanations will be more correct for the MFVs
compared to the SFVs. The explain in plain English data is shown
in Figure 10. Participants scored an average of 0.39 and 0.21 for the
MFV and SFV Days Since operation respectively and 0.12 and 0.27
for the MFV and SFV Weather versions. The differences according
to a 1-tailed Mann-Whitney are significant for the Days Since case
(W=171, p=0.02) but are insignificant for the Weather case (W=49.5,
p=0.99).

For the behaviour questions, our hypothesis (H?eh) is partici-
pants will score higher on the behaviour questions for the MFVs
compared to the SFVs. The scores for the behaviour questions are
shown in Figure 11. Participants scored an average of 0.71 and 0.61
for the MFV and SFV Days Since treatments respectively and 0.63
and 0.89 for the MFV and SFV Weather treatments. The differences
according to a 1-tailed Mann-Whitney are not significant in either
the Days Since (W=151, p=0.11) or Weather (W=44, p=1.00) cases.

In fact, by all measures, participants looking at Weather per-
formed better with the SFV, whereas participants looking at Days
Since performed better with the MFV. That is, the performance
was determined by the operation, not the decomposition. It should
be noted that most of the differences are not statistically significant.
We discuss the results in detail below.

Figure 12 shows the results of participants’ confidence in their
EiPE responses. These results suggest participants were less confi-
dence when they had the MFV of the operation.

We asked participants to give their opinion on the comprehen-
sibility of the version they saw. Figure 13 shows the self-reported
comprehensibility of the code by version as proportions. The results

On the comprehensibility of functional decomposition: An empirical study

- e
—

DaysSingle WeatherMultiple ~ WeatherSingle
Variation
White dots show means; Each Question Marked out of 1

Average Mark
°
3

DaysM‘uItlp\e

Figure 11: Behaviour by Version

N Key
Low
] MEDIUM

DaysMultiple DaysSingle ~ WeatherMultiple WeatherSingle
Version

e =
N o
& 3

Proportion
°
o
3

Figure 12: Confidence of EiPE by Version

Key
731 B vervorericu

B orFricutr

NEUTRAL
EASY

Proportion
° °
& 3
& a3

o
~
&

VERY-EASY

)
=)
3

DaysMultiple DaysSingle WeatherMultipleWeatherSingle
Version

Figure 13: Self-reported Comprehensibility by Version

| I

0.75 Version

W neErer

SINGLE
MULTIPLE
- - .
0.00- I

DaysMultiple DaysSingle ~ WeatherMultiple WeatherSingle
Variation

Proportion
o
I
g

Figure 14: Version Preference by Version Seen

suggest that participants thought for Weather that the MFV was
harder to understand, but for Days Since it was the SFV that was
harder.

As the final task, participants were shown the other version for
the operation they had worked on (i.e if they had the SFV then
they were shown the MFV) and asked which of the two versions
they would have preferred to work with. Figure 14 shows, for the
version they saw in the main tasks, which version they would have
preferred to have worked with as a proportion. The results suggest
that participants preferred the version they did not work with.

ICPC *24, April 15-16, 2024, Lisbon, Portugal

5 DISCUSSION

It is generally believed that smaller functions are better than larger
functions, but there has been little research as to how they are
better. One school of thought is that smaller functions improve
comprehensibility. Our results do not support this school of thought.

As discussed in Section 3, there are several factors to control and,
consequently, several possible threats to validity, especially internal
validity. The first question is whether our results are meaningful
since few of our tests were statistically significant.

However, we do note that the relationships between the measure-
ments we made were consistent: for Weather the SFV was always
the best and for Days Since the MFV was the best. This was true
for multiple measures of comprehensibility—the time taken to read
the code (Figure 9), the accuracy of the explanations of code (Figure
10), the correctness of the code behaviour tasks (Figure 11), and the
perception of the participants of the comprehensibility (Figure 13).
That the relationship held for all measures provides “triangulation”,
which is important to provide confidence in the results.

There was some consistency in the confidence participants had
for their EiPE answers (Figure 12). Participants were less confident
in their answers for the MFV; however, at least for Days Since they
performed better for that version.

One explanation for our results is that our decomposition was
wrong in some way. We put considerable effort into developing the
code we used, spending several meetings scrutinising the choices
made in the different versions. We are acutely aware that objective
measures as to what are good choices are limited, so assessing our
choices has a subjective element to it. Nevertheless, we are confident
that, even if our choices were not the absolute best, they were good
enough. Even with hindsight, there are no glaring problems.

Another explanation is that the benefits of decomposition are
only evident when dealing with implementations bigger than those
used in our study. This has implications for educators who typically
use small examples to demonstrate programming principles and
best practices (such as decomposition). It might be that at small
scales there are no obvious benefits to such practices and this may
explain why students are not convinced by claims of such benefits.

This does not explain why there appears to be some benefit in
some cases. This could be due to the essential complexity being a
bigger factor than the decomposition at the scale we are dealing
with.

It could also be that we are focusing on the wrong thing. The
key insight by Parnas is that the decomposition should be based on
design decisions that are likely to change, not through functional
decomposition—our treatment variable [27]. It may be that the
claims made about the benefit of small functions comes from how
those functions are distributed across modules and how they hide
design decisions that might change, rather than simply making
smaller functions. That said, there is some evidence that even in
this case the benefit is not due to improved comprehensibility [39].

Work in computing education may also provide some insight
into our results. Cognitive Load Theory (CLT) describes how under-
standing is reduced when the processing required by a task exceeds
the limited capacity of working memory [29]. Conceptually mod-
eling a computer program requires mental effort to understand
each module. But it also requires effort to model the interactivity

ICPC *24, April 15-16, 2024, Lisbon, Portugal

between different modules. This suggests that code comprised of
many small modules that interact may prove difficult to understand
if the code is not organised in ways that activate existing hierar-
chical schema (i.e., when the model used by the author to organise
the code is not familiar to the reader).

Subgoal labels are names given to functional steps in a solution
that allows a reader to “chunk” the information and reduce cog-
nitive load, and play a similar role to the modularisation of code
for comprehension purposes. Worked examples that explain a pro-
gramming solution to a given problem are more effective when
they use subgoal labels because the labels influence how learners
mentally represent a problem [7]. Although subgoals improve per-
formance in some contexts, in other cases there was no observable
improvement [24]. These findings from computing education sug-
gest that there are likely characteristics of code that impact the
mental models formed by a reader, and subsequently comprehensi-
bility. However, relatively few studies have measured the cognitive
load imposed by different design decisions, and concrete evidence
for the impact of modularisation choices on cognitive load remains
an area for future work [9].

We asked participants which version (SFV or MFV) they thought
would take less effort to understand (Figure 14) and asked them to
comment on why they picked the version they did. The comments
are perhaps illustrative of the complexity in assessing comprehensi-
bility. For Weather a participant who first saw the SFV, thought the
MFV would take less effort, commenting “[The MVF] has more func-
tions; their names give more information to help to understand.” A
participant who first saw the MFV preferred the SFV, saying “Th[sic]
comments in [the SFV] make the overall code easier to comprehend.”
We saw similar comments for Days Since.

5.1 Threats to Validity

Internal validity. We believe that the most significant difference
between a SFV and a MFV for the same operation in our exper-
iment is the decomposition. If there is a difference that impacts
comprehension more than this decomposition, then it is not obvi-
ous what it is—but it would be extremely interesting to identify. Of
particular interest is whether our use of comments in the SFV made
a significant difference. Another question is whether the relatively
small size of the SFV is a factor.

It is possible that some students may not have taken the study
seriously and their performance may not reflect their actual under-
standing. However, as participants were randomly allocated to the
conditions, the impact of lack of effort or of experience should be
minimised. The results from the Pretest section indicate that the
less capable participants were spread across the treatments, and
these were removed from the analysis.

External validity. While use of students is often considered a
threat to external validity, there are situations where it is appro-
priate (see, e.g. [10]). In our case, if our findings only apply to
students then that suggests some thought should be given to how
functional decomposition is taught. In fact, we speculate experi-
enced developers would be less affected by the choice of functional
decomposition.

The code was written in Java, but the difference in syntax be-
tween most languages at the function level is quite small so there is

Tempero et al.

no reason to believe the choice of language is a factor. Nevertheless
it a factor that needs further exploration.

Construct validity. We followed previous research in the mea-
surements we made. Exactly what the relationship is between what
we measured and our dependent variable, comprehensibility, is a
matter for debate but we believe if there is an effect on compre-
hensibility due to the use of decomposition, the measurements we
made were appropriate to detect it.

The time data came from the Qualtrics platform and from past
uses of it we have no reason to doubt that data. The evaluation of
the EiPE responses was mostly done by one person but checked
by two others. The codes could have been scored in different ways
(e.g. different weights to different codes). We tried some different
options and found no difference. The evaluation of behaviour scores
was also performed by one person and checked by two.

Conclusion validity. Due to the non-normality of most of our
data, we had to use less-powerful non-parametric statistical tests.
This means there is the possibility that a statistical relationship
does exist in our data that we have not been able to identify. If such
a relationship exists, it seems unlikely to affect our result.

6 CONCLUSIONS

We presented the results of a between-subjects study investigating
the impact of decomposition on comprehensibility of code. Specif-
ically, we presented participants with implementations of some
functionality (which we refer to as an “operation”) that was either
organised as a single function, or decomposed into multiple func-
tions. We had two operations, and two implementations of each
(single or multiple functions), making a total of 4 versions. Partic-
ipants were presented with one of the versions randomly via the
on-line survey system Qualtrics, and were asked various questions
intended to test their understanding of the code they saw.

The results were that for one operation (Weather) participants
performed better with the single function version and for the other
(Days Since) participants performed better with the multiple func-
tion version. This suggests that there is not a general relationship
between how code is decomposed and comprehensibility.

Of course one experiment is not definitive and more similar
studies are needed to confirm or refute our findings. There are many
directions to pursue. Are our inconclusive results a consequence
of: the essential complexity of the operations; the small amount of
code; the order the functions in the multiple-function version are
presented; something about the code such as choice of names; our
participants; the environment we used; the programming language;
or something else? If our findings do prove to be valid, this leaves
the open question—what actually is the benefit of small functions?

On the comprehensibility of functional decomposition: An empirical study

REFERENCES

(1]

(11

[12]

[13

[14

=
)

[16

[17]

(18]

[19]

[20]

[
=

[22

[23

[24]

Ahmed S Alardawi and Agil M Agil. 2015. Novice comprehension of Object-
Oriented OO programs: An empirical study. In 2015 World Congress on Information
Technology and Computer Applications (WCITCA). 1-4. https://doi.org/10.1109/
WCITCA.2015.7367057

Edward V. Berard. 1993. Essays on object-oriented software engineering (vol. 1).
Prentice-Hall, Inc.

B. W.Boehm, J. R. Brown, and M. Lipow. 1976. Quantitative evaluation of software
quality. In ICSE ’76: Proceedings of the 2nd International Conference on Software
engineering. 592-605.

Grady Booch. 1994. Object-Oriented Analysis and Design: with Applications (2nd
ed.). Addison-Wesley.

Frederick P. Brooks, Jr. 1995. The Mythical Man-Month (20th anniversary ed.).
Addison-Wesley.

Caitlin Jee. 2021. Modularization in Software Engineering. Medium. Retrieved
October 20th, 2023 from https://medium.com/@caitlinjeespn/modularization-in-
software-engineering- 1af52807ceed

Richard Catrambone. 1998. The subgoal learning model: Creating better examples
so that students can solve novel problems. Journal of experimental psychology:
General 127, 4 (1998), 355.

Thomas A Corbi. 1989. Program understanding: Challenge for the 1990s. IBM
Systems Journal 28, 2 (1989), 294-306.

Rodrigo Duran, Albina Zavgorodniaia, and Juha Sorva. 2022. Cognitive Load
Theory in Computing Education Research: A Review. ACM Trans. Comput. Educ.
22, 4, Article 40 (sep 2022), 27 pages. https://doi.org/10.1145/3483843

Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jiirgen Miinch,
Andreas Jedlitschka, and Markku Oivo. 2018. Empirical software engineering
experts on the use of students and professionals in experiments. Empirical
Software Engineering 23 (2018), 452-489. https://doi.org/10.1007/s10664-017-
9523-3

Dror G. Feitelson. 2021. Considerations and Pitfalls in Controlled Experiments on
Code Comprehension. In 2021 International Conference on Program Comprehension
(ICPC). 106-117. https://doi.org/10.1109/ICPC52881.2021.00019

W. Findlay and D.A. Watt. 1981. Pascal: An Introduction to Methodical Program-
ming. Pitman Publishing Inc., Massachusetts, USA.

Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of the Tenth
Annual Conference on International Computing Education Research (Glasgow,
Scotland, United Kingdom) (ICER ’14). Association for Computing Machinery,
New York, NY, USA, 35-42. https://doi.org/10.1145/2632320.2632346

Richard K Fjeldstad. 1983. Application program maintenance study. Report to
Our Respondents, Proceedings GUIDE 48 (1983).

International Organization for Standardization. 2011. ISO/IEC 25010:2011:
Systems and software engineering — Systems and software Quality Require-
ments and Evaluation (SQuaRE) — System and software quality models. https:
/Iwww.iso.org/standard/35733.html.

Martin Fowler. 1999. Refactoring: improving the design of existing code. Addison-
Wesley, Boston, MA, USA.

Richard Gauthier and Stephen Pont. 1970. Designing Systems Programs. Prentice-
Hall.

Amy J Ko, Brad A Myers, Michael] Coblenz, and Htet Htet Aung. 2006. An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on software engineering
32, 12 (2006), 971-987.

Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name? A Study of Identifiers. In 14th IEEE international conference on program
comprehension (ICPC’06). IEEE, 3-12.

Robert C. Martin. 2009. Clean Code: A handbook of agile software craftmanship.
Prentice Hall.

Bertrand Mayer. 1988. Object-oriented Software Construction. Prentice-Hall, Inc.,
Hertfordshire, UK.

Millie MacDonald. 2023. Modular programming: beyond the spaghetti mess.
TINY. Retrieved October 20th, 2023 from https://www.tiny.cloud/blog/modular-
programming-principle/

Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I know what you did
last summer-an investigation of how developers spend their time. In 2015 IEEE
23rd international conference on program comprehension. IEEE, 25-35.

Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. 2015. Sub-
goals, Context, and Worked Examples in Learning Computing Problem Solv-
ing. In Proceedings of the Eleventh Annual International Conference on Inter-
national Computing Education Research (Omaha, Nebraska, USA) (ICER ’15).

[25

[26

'w
&,

®
&

&
=)

[35

[36

[37

[38

[40

[41

=
)

[43

[44

[45

ICPC *24, April 15-16, 2024, Lisbon, Portugal

Association for Computing Machinery, New York, NY, USA, 21-29.
//doi.org/10.1145/2787622.2787733

National Institute for Standards and Technology NIST). n.d.. Modularity is for
Understandability, Maintainabilty and Testability. Retrieved October 20th, 2023
from https://www.niap-ccevs.org/Useful_Links/PUBLIC/0140.html

Oracle. n.d.. Java Language Specification. Chapter 7: Packages and Modules. Re-

trieved October 20th, 2023 from https://docs.oracle.com/javase/specs/jls/se20/
html/jls-7.html

David L. Parnas. 1972. On the criteria to be used in decomposing systems into
modules. Commun. ACM 15, 12 (1972), 1053-1058. https://doi.org/10.1145/
361598.361623

Shari L Pfleeger. 1998. Software Engineering: Theory and Practice. Prentice Hall.
Jan L Plass, Roxana Moreno, and Roland Briinken. 2010. Cognitive load theory.
(2010).

Python Software Foundation. 2023. The Python Tutorial: Modules. Retrieved
October 20th, 2023 from https://docs.python.org/3/tutorial/modules.html

Paul Ralph and Ewan Tempero. 2018. Construct Validity in Software Engineering
Research and Software Metrics. In 22nd International Conference on Evaluation
and Assessment in Software Engineering. https://doi.org/10.1145/3210459.3210461
Vennila Ramalingam and Susan Wiedenbeck. 1997. An Empirical Study of Novice
Program Comprehension in the Imperative and Object-Oriented Styles. In Papers
Presented at the Seventh Workshop on Empirical Studies of Programmers (Alexan-
dria, Virginia, USA) (ESP ’97). Association for Computing Machinery, New York,
NY, USA, 124-139. https://doi.org/10.1145/266399.266411

Giulia Sellitto, Emanuele Iannone, Zadia Codabux, Valentina Lenarduzzi, Andrea
De Lucia, Fabio Palomba, and Filomena Ferrucci. 2022. Toward Understanding
the Impact of Refactoring on Program Comprehension. In 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). 731-742.
https://doi.org/10.1109/SANER53432.2022.00090

Janet Siegmund, Christian Kastner, Jorg Liebig, Sven Apel, and Stefan Hanenberg.
2014. Measuring and modeling programming experience. Empirical Software
Engineering 19 (2014), 1299-1334.

Janet Siegmund and Jana Schumann. 2015. Confounding Parameters on Program
Comprehension: A Literature Survey. Empirical Softw. Engg. 20, 4 (aug 2015),
1159-1192. https://doi.org/10.1007/s10664-014-9318-8

Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on Internal
and External Validity in Empirical Software Engineering. In Proceedings of the
37th International Conference on Software Engineering - Volume 1 (Florence, Italy)
(ICSE °15). IEEE Press, 9-19.

E. Soloway. 1986. Learning to Program = Learning to Construct Mechanisms and
Explanations. Commun. ACM 29, 9 (sep 1986), 850-858. https://doi.org/10.1145/
6592.6594

Barbee E Teasley. 1994. The effects of naming style and expertise on program
comprehension. International Journal of Human-Computer Studies 40, 5 (1994),
757-1770.

Ewan Tempero, Kelly Blincoe, and Danielle Lottridge. 2023. An Experiment on the
Effects of Modularity on Code Modification and Understanding. In Proceedings of
the 25th Australasian Computing Education Conference (Melbourne, VIC, Australia)
(ACE ’23). Association for Computing Machinery, New York, NY, USA, 105-112.
https://doi.org/10.1145/3576123.3576138

Ewan Tempero, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, Diana
Kirk, Juho Leinonen, Asma Shakil, Robert Sheehan, James Tizard, Yu-Cheng Tu,
and Burkhard Wuensche. 2023. Replication package for “On the comprehensibility
of functional decomposition: An empirical study”. https://github.com/uoa-cs-
perg/icpc2024-rene-replication

Susan Wiedenbeck and Vennila Ramalingam. 1999. Novice comprehension of
small programs written in the procedural and object-oriented styles. International
Journal of Human-Computer Studies 51, 1 (1999), 71-87. https://doi.org/10.1006/
ijhc.1999.0269

Susan Wiedenbeck, Vennila Ramalingam, Suseela Sarasamma, and Cynthial
Corritore. 1999. A comparison of the comprehension of object-oriented and
procedural programs by novice programmers. Interacting with Computers 11, 3
(1999), 255-282. https://doi.org/10.1016/50953-5438(98)00029-0

Marvin Wyrich, Justus Bogner, and Stefan Wagner. 2023. 40 Years of Designing
Code Comprehension Experiments: A Systematic Mapping Study. ACM Comput.
Surv. (oct 2023). https://doi.org/10.1145/3626522 Just Accepted.

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. 2017. Measuring program comprehension: A large-scale field study with
professionals. IEEE Transactions on Software Engineering 44, 10 (2017), 951-976.
Marvin V Zelkowitz, Alan C Shaw, and John D Gannon. 1979. Principles of
software engineering and design. Prentice Hall Professional Technical Reference.

https:

https://doi.org/10.1109/WCITCA.2015.7367057
https://doi.org/10.1109/WCITCA.2015.7367057
https://medium.com/@caitlinjeespn/modularization-in-software-engineering-1af52807ceed
https://medium.com/@caitlinjeespn/modularization-in-software-engineering-1af52807ceed
https://doi.org/10.1145/3483843
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1109/ICPC52881.2021.00019
https://doi.org/10.1145/2632320.2632346
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.tiny.cloud/blog/modular-programming-principle/
https://www.tiny.cloud/blog/modular-programming-principle/
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1145/2787622.2787733
https://www.niap-ccevs.org/Useful_Links/PUBLIC/0140.html
https://docs.oracle.com/javase/specs/jls/se20/html/jls-7.html
https://docs.oracle.com/javase/specs/jls/se20/html/jls-7.html
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://docs.python.org/3/tutorial/modules.html
https://doi.org/10.1145/3210459.3210461
https://doi.org/10.1145/266399.266411
https://doi.org/10.1109/SANER53432.2022.00090
https://doi.org/10.1007/s10664-014-9318-8
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/3576123.3576138
https://github.com/uoa-cs-pcrg/icpc2024-rene-replication
https://github.com/uoa-cs-pcrg/icpc2024-rene-replication
https://doi.org/10.1006/ijhc.1999.0269
https://doi.org/10.1006/ijhc.1999.0269
https://doi.org/10.1016/S0953-5438(98)00029-0
https://doi.org/10.1145/3626522

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Overview
	3.2 Artefacts
	3.3 Instrument
	3.4 Participants
	3.5 Delivery
	3.6 Analysis
	3.7 Experimental Design

	4 Results
	5 Discussion
	5.1 Threats to Validity

	6 Conclusions
	References

